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Abstract ations, or itemsets, have adopted the Apriori [1] approach
in which knowledge about the frequency /otength item-
We propose the Extended Frequent Pattern Tree (EFP-sets is used to restrict the search space in the discovery of
Tree) to address the problem of intertransaction associa- k + 1 length associations. These algorithms may generate a
tion rule mining where the frequent occurrence of a large large number of candidate itemsets, especially at lower sup
number of items results in a combinatorial explosion that port thresholds and in dense data sets where the number of
limits the practical application of the existing Aprioriin  generated candidates may be vast. The computational com-
spired mining algorithms in a smart home environment. The plexity of testing the frequency of the candidates, many of
EFP-Tree mining algorithm avoids candidate generation which may be infrequent, can become intractable.
by employing a divide and conquer approach that recur-  Addressing this issue, in this work we show how pattern
sively finds the set of frequent intertransaction assomiati  growth may be employed as an alternative to the Apriori
rules. Empirical results comparing the computational per- based approach for the mining of intertransaction associa-
formance of the EFP-Tree with the First Intra Then Inter tions using the Extended FP-Tree (EFP-Tree), an adapta-
(FITI) algorithm on real world data from a smart home are tion of the Frequent Pattern Tree (FP-Tree) [4] to the in-
presented. Experimental results show significant computa-tertransaction association rule mining problem. The patte
tional improvement of the EFP-Tree over FITI when a large growth approach in the FP-Tree is a more computationally
number of rules is present in the data. efficient method for association rule mining that elimirsate
the need for candidate itemset generation by first transpos-
ing a transactional database into a intermediate form that

1 Introduction aids subsequent mining. The FP-Tree structure and min-
ing algorithm, however, only finds frequent intratransati

Intertransaction association rule mining [7] extends the 2SSociation rules and is not suitable to intertransactiée r

discovery ofintratransaction associations to include rela- MniNg. L _
tionships that span transactions in one or more domain spe- EXPerimental results showing_ significantly improved
cific dimensions. The dimensional attribute may be, for ex- COmMputational performance over the FITI [12] algorithm on

ample, temporal in the prediction of stock market move- synthetic dense data and on real world data captured in a
ments or spatial in a GIS application. In our work, we seek Smart home are presented.

to find intertransaction associations from the event logs in

a smart home environment for the detection and analysis of2 Related Work

emergent human behaviours [8, 9]. Such an intelligent en-

vironment generates many sensor events over short periods The discovery of intertransaction association rules was
of time which results in dense data sets where the number ofirst proposed with the E-Apriori and EH-Apriori algo-
frequently occurring events can be numerous. The existingrithms [6]. These Apriori inspired approaches make mul-
algorithms [6, 12] for the mining of intertransaction adsoc tiple passes over the database to find the set of frequent as-



sociation rules, first generating and then searching for can occurring in a databas®B = (11> ...Ty) of transac-
didatek-itemset associations given known frequént-(1)- tions T; (1 < i < N) such thatT; (z) € IV itemsz in T;.
itemsets discovered in the previous pass. The generatiorAt any transactioril; the items are said to form the set
and then verification of the frequency of candidate itemsets S, = {a}, ... a%. }. For the case of a single intertransac-
by these algorithms restricts their scalability as the neimb tion dimension attribute, an intertransaction sliding daw
of candidate itemsets generated may be prohibitive [4]. of sizew transactions is passed over the transactiod3fh
The First Intra Then Inter (FITI) algorithm [12] is a to extract the extended transaction items such that the ex-
more efficient E-Apriori-like algorithm that initially firsl tended transaction &; is E1, = {St,,ST,41 .- STi4w}
the complete set of frequent intratransaction itemsets as and the set of all possible extended transaction items is
basis for transforming the database into a structure tdatai £ = {afa3...a’...a}/}. The mining problem reduces
subsequent mining of the intertransaction itemsets. to the traditional intratransaction case when= 0, that
Intertransaction mining was reformulated iin [5] to con- is, when only intratransaction items are included in an ex-
sider the problem of mining frequent continuities, a type tended transaction itemset.
of periodic pattern, from event sequences. The work in-  The superscript notation is dropped when the value of an
troduces frequent continuity mining as a special case ofitem is known. For example, the extended transaction items
intertransaction mining in which event sequences are rep-retrieved with a sliding intertransaction window of size=
resented as contiguous transactions of single event items5 starting at transaction ID 300 from the example database
The proposed PROjected Window Lists (PROWL) algo- in Tabld 1 are @, By, Ag, Cs, Ez, B3, E3, By, and A, given
rithm was shown to outperform FITI when it was applied that the dimensional attribute is the transaction time.
to this special case. In this work we refer to the extended transaction items
Similar to our work is the use of event trees, an FP- {a?...a},} as intraitems and the extended transaction
Tree like structure where event nodes are flagged as belongi{ems{a} . a}(’/[} as interitems.
ing either to the current transaction or a future transactio Intertransaction association rules are implication rules
[10]. This was applied to finding relations between financial such thatX = Y with the following properties [12]
events and stock market movement using event episodes.

In this work only the existence of events within the slid- XCEYCE @)
ing window is important, the ordering or temporal relation- Ja? € X 2)
ship of events is not considered. In contrast, the EFP-Tree Jal € Y,d >0 (3)
specifically encodes these temporal relationships. XNY =0 )

The FP-Tree has also been applied to the prediction of
rare events [2]. FP-Trees conditioned on the occurrence The support and confidence measures of an itemset are
of specific rare events in a transaction database were congalculated aé%v‘ and% respectively wheréT ., | is the
structed using a codebook whose alphabet encodes both agmber of extended transactions containing all itens in
event and its temporal offset in relation to the event being y |7, | is the number of extended transactions containing
predicted. The standard FP-Growth algorithm was used t0g|| items inX andX is the number of extended transactions.
mine the associations and the codebook used to recover the
frequent intertransaction associations occurring padhe 4 Extended Frequent Pattern Tree
event being conditioned on. This technique requires each
FP-Tree to be conditioned on a single rare event and can
not be efficiently applied to the general case intertransac-
tion association rule mining problem.

The proposed Extended Frequent Pattern Tree (EFP-
Tree) is a tree structure of descending frequency ordered
intraitem nodes with zero or one interitem Frequent Pattern
. oo Tree (FP-Tree) subtrees where the frequency ordering of the
3 Intertransaction Association Rules interitems is conditioned on the intratransaction itenepar
Each node in the tree contains an item ID which maps to a
Intertransaction association rules describe associegion codebook of item descriptors, a frequency counter, a link
lationships that span outside traditional “market basket”  to its parent node, links to zero or more children and a link
tratransaction items or events in one or more domain spe-to the next node in the tree of the same item ID. Interitem
cific dimension. A video store, for example, may be in- nodes also carry the dimensional offset of the item in rela-
terested in how future rentals are influenced by the itemstion to its intratransaction parent.
shoppers have borrowed in the past while a stock market Nodes are placed into the tree such that the entire set of
analyst may wish to find associations of market events tofrequent items for an arbitrary intertransaction can be re-
predict movement in share prices. stored by traversing the tree. The ordering of nodes into de-
Consider the set of all items = {a1a2 Lal.. aM} scending frequency increases the likelihood of items place



move items not present in the known frequent intraitem set
from the first pass and are sorted in order of descending fre-
guency. The ordered item listis recursively inserted ihto t
tree such that at each leviein the tree the child node with

Table 1. Example database with the unsorted and de-
scending frequency ordered items. The time at which
each transaction occurs is shown.

the ID of thel™ item in the ordered array is traversed and its

Trans. ID | Time | Rawltems | Ordered Items frequency count is incremented. Children nodes that do not
100 1 ACB BCA exist will be created prior to traversal and kept in codebook
200 2 B B ID order so that binary search can be used when traversing
300 3 CAB BCA the tree. The linked list of nodes of same item ID that orig-
400 5 EC CE inates from the root node header table is updated whenever
500 6 BE BE a new node is created. The frequency of the interitems rela-
600 7 AB BA tive to 7} are incremented in the final intraitem node that is
700 9 C C traversed. The ordered lists of frequent intraitems anmedto
800 10 CDB BCD for use in the third pass. The root node is said to be at level
900 11 CBA BCA —o

The third and final pass over the database builds the in-
teritem sub-trees in the EFP-Tree structure. At each trans-
actionT; the cached ordered list of frequent intraitems are
used to traverse the intraitem tree and locate the intraitem
node that will become the root node of the interitem sub-
tree. The extended items within the intertransactionrsjdi

Table 2. Extended transactions retrieved from the ex-
ample database in Table 1 using a sliding intertrans-
action window of sizev = 5.

Time Extended transaction items window atT; are filtered to remove known infrequent in-
1 By, Co Ag B; B C, A, C, E, B E5 teritems and the remaining items are sorted in order of lo-
2 By B; C; A; C3 E3 By E4 Bs A cal descending frequency given the intraitem parent. The
3 By Co Ag Cs E; B3 E3 By A, ordered interitems are then recursively inserted intothe i
5 Co Ey By E; By Ay C, B Cs D5 teritem subtree as before.
6 Bo Eg By A; C3 B, Cy Dy B; Cs As The example database in Table 1 and Table 2 is used to
7 By Ay Cy B3 C3 D5 By Cy Ay demonstrate the construction of the EFP-Tree structure in
9 CyB;C; DBy Cy Ay Figure_1 using a minimum support thresholdcof= 3 and
10 Bg Co Dy By Ci A a sliding intertransaction window size of= 5.
11 By Cy Ag The frequent items are found in the first pass over the

database from Table 2. The frequent intraitems found given
the minimum support threshold = 3 are B):7, G:6
. ) ) and Ay:4 with frequency counts of 7, 6 and 4 respectively.
into the tree sharing common nodes, creating a compactrepThe frequent interitems meeting the same minimum sup-
resentation of the database transactions that capturesthe ot threshold are A3, A:3, By:6, By:3, By:4, Bs:4, C;:3,

sociative relationship of the transaction items. C,:4, Cy:3 and G:4.

In the second pass, the intraitemsg, B2y and Ay are
added to the root node of an empty tree such that all nodes
are recursively created. The frequency of itegi8incre-

Three passes, detailed in Algorithm 1, over a databasemented by the next transaction. The items By and A
are required to build the tree structure. As in the FP-Tree, are then added again, the existing nodes are traversed and
the frequency of single items is gathered in an initial pass their frequency counts are each incremented. The next two
over the database to build the set of frequent single in-transactions see the nodg Created as the second child of
traitems, or 1-itemsets, and the set of frequent interitemsthe root node and an increment to the count gf B, and
given a minimum support threshold. The intraitems are or- A are then added such that Aecomes the second child
dered by descending frequency to become the item lookupof By and the count of Bis incremented once more. The
header table for the intraitem tree. The frequent items arecount of the nodes representing the intratransaction assoc
those items whose frequency count is greater than or equaétions G and By, C, are incremented by the next two trans-
to the minimum support threshotd actions. Finally, the counts of the items in the path 8,

The intraitem FP-Tree is built and the conditional fre- Ao are once again incremented.
guencies of the interitems are found in the second pass. The third and final pass over the example database now
The intraitems for each transacti@hare first filtered tore-  begins. The known frequent items found in the first pass

4.1 TreeConstruction
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Figure 1. The Extended FP-Tree for the example database with 5 anda = 3. Subscript numbers represent
the dimensional offset, in this case the item time, relaivéhe intratransaction items while colon delineated nuisibe
depict the node frequency. The header tables of the intsidiion item subtrees have been omitted for clarity.

allow the extended transaction items at time 1 to be reducedhe interitems G, Cs, B, and C are inserted as children
to By, Co, Ag, B1, Az, By, Gy, C4 and B given that the of Ag. The next transaction at time 9 sees the count of the
items E and B are known to not meet the minimum sup- nodes A, B; and B, as children of g, incremented and
port threshold. The interitems will be inserted at the node the interitems € and G inserted as children of B Finally,
identified by following the path B Cy, Ag. The insertion of the nodes B, Cy are traversed and the frequent interitems
the ordered list of interitems from the first extended transa from the extended transaction at time 10 are appended.
tion will create the children interitem nodes @, Az, Ba, No interitems exist in the extended items in Tdble 2 at
C, and B;. Next, the extended items at time 2 are reduced time 11 so no further action is required.

to A, By, Cy, C3, B4 and B;. The items are ordered and in-

serted as new children of,BThe nodes B, Cy and Ay will o

again be traversed at time 3. The child nodexdll then be 4.2 RuleMining

incremented and a new node for item Bill be inserted as . ) o
a child of G,. A method to extract the intertransaction associations

present in the EFP-Tree structure and to generate the IARs
The interitems from Table/2 at time 5 are reduced o B is now required. As in the FP-Tree, retrieval of association
A, Bo, C, and B; and inserted as new children of QNext, rules from the EFP-Tree is made possible by the pattern
the interitems at time 6 are filtered and inserted as childrengrowth property [3, 4]. Pattern growth uses a divide and
of By such that the counts of A By, C3, B, and B are conquer approach that recursively builds the entire set of
each incremented and the nodgi€inserted as a new child  frequent associations by constructing trees conditionmed o
of B;. Attime 7 the intraitems Band Ay are traversed and  known frequent base rules and taking the dot product of the



Algorithm 4.1: EFP-Tree Construction
Input: Transaction DatabageB, sliding intertransaction window
sizemaxSpantree building support threshoidinSupport intertransaction window siz@axSpan
Output: EFP-Tredree Output: Set of frequent rules
Method: Method:
/I First Pass minedRules— (;

Count the frequency of single items DB to build the set of For each itema; in header table oV from least to most

Algorithm 4.2: EFP-Growth
Input: EFP-TreeN, mining support threshold, sliding

i : ; frequent such that suppdt;) > « do
frequent itemd- such that suppo > minSupport
d pPofi) = PP Find the conditional prefix path and the extended items for

a;, propagate the intertransaction items of each occurrence
of a; to its parent and build the conditional EFP-TfEg
If T, contains a single intratransaction pdtsuch that no
non-leaf node contains an intertransaction sutitnee

T, < T. with P removed;

singlePathRules— all combinations of

intratransaction nodes iR;

singlePathRules— singlePathRulex rules returned

by call to FP-Growtt{leaf node ofP, null) as in [4];
end
returnedRules— call EFP-GrowtH(T¢, o, maxSpaly,
Build the intertransaction item FP-Tr& using the
extended items from;;
interRules— call FP-Growth(T., null) as in [4];
ruleSet— returnedRulesJ interRulesU singlePathRules
For each rule R € ruleSetdo

adda; to R with

support R) = min (support(R) , support(a;));
end
adda; to ruleSetwith support = frequency af; in V;
minedRules— minedRules) ruleSet

(I<i<JF)

/I Second Pass

Create the intratransaction root nddee

For each intratransaction in DB do
A — intratransaction items such thaf € F (1< 7 < |A])
ordered by descending frequency
| «— count of intertransaction itenjg, maxSpan
recursively insert the nodésontotreefinishing at node
interParent
interParent.interFreg— interParent.interFregt |

end

/I Third Pass
For each intratransaction in DB do
A — intratransaction items such thaf € F (1< i < |A])
ordered by descending frequency
interParent<— intraitem node irtree corresponding té
E < intertransaction items such tHaf € F (1< i < |E|)
ordered by descending frequeridgaf.interFreq
create the root nodeaterParent.interTree
recursively insert the nodésontointerParent.interTree
end

end
Return minedRules

frequent items in the conditional tree and the conditional

base itemset to prpduce new rules. These new ruIe_; thenertyM—.JL we can infer that there exists a relation & B;
become the conditional base for the next set of conditional =, 7 " .
trees to be mined. which is known to exist as bothidc L and B, € L. O

The Frequent Pattern Growth (FP-Growth) algorithm  The EFP-Growth algorithm, detailed in Algoritim 4.2,
from the FP-Tree differs to the Extended FP-Growth (EFP- will now be described. Starting with an EFP-TrBend an
Growth) algorithm used to mine the EFP-Tree in that the lat- empty conditional base, or rule suffix, EFP-Growth iterates
ter must consider intertransaction relationship inhedéa  over the set of intraitems in 7" to build a conditional tree
along the intraitem nodes. T.. conditioned or/ for each frequent. At each recursion,

1 is prepended to the conditional base to generate, or grow, a

Intratransaction item nodes inherit the intertransadtiem neV\; assom_atlont rulel\:land to:.lé”? the condtl_tlon_al tree fer th

relationships of their intratransaction item children. nextrecursive step. Vo candidate generation IS necessary a
the frequency of the items is stored in the tree structure and

Interitems are inserted into a subtree whose root node is

the last intraitem node traversed to when an extended transi"III generated rules arg_guaranteed to be frgquent.
Two types of conditional tree are used in EFP-Growth,

action itemset is sorted into descending frequency ordgr an .2 o

placed into the EFP-Tree. As a given interitem subtree can? tco_?dltlonal dE_Ff-'_I;red} tlrj]sfd forbﬂndmg d tthe retlateczidth
only be reached by traversing the intraitem tree in the pres—In rai e;n; tan't n erll emsﬁ. a c(:jan Fli #Se ? tﬁx en €
ence of all parent intraitem nodes it follows that the relati present intraitem rule suffix and a FP-Trég of the in-

ship between an intraitem node and the items in the subtreéemems mhented by .the condltlgngl base. Th'.s Iatt.eE ts?
used to find the interitem associations for a given intraitem

must apply to all nodes traversed to reach the intertransac- . . : . . . .

tion item subtree. rule suffix and is required as not all interitems inherited by
the conditional base may be includediin

Example 4.1. The extended transactidnh = Ay, By, Cy, Given a treeT’, the conditional tred’. conditioned on

Bi, Cs is inserted as an ordered item list into an empty tree. somel is found by collecting the set of extended transac-

The item nodes 4§ By and G are created as a single branch tions formed through the union of the prefix path and the

in the intraitem tree and the items, Bind G are in turn inherited interitems for each node Thwhose item ID isl

inserted as interitem nodes as children gf Given Prop- and whose immediate parent is an intraitem node. The pre-

Property 4.1. (Intertransaction inheritance property)



fix path for any given node is the set of its parent nodes andditional base BA, and generate its respective rulg B>
corresponding frequencies as stored in the EFP-Tree. AllAy:4. No prefix path of BA, exists in Figure 2(a) so
nodes inT" of item ID I are found by following the linked  no conditional tre€el.|BoAo needs to be built. The min-
list of “same item” ID nodes, the head of which is stored in ing of the interitem FP-Tred.|ByA,, the same as for
the intraitem header table @f. The extended transactions 7.|A, in Figure 2(b), generates the rulesA& = C,:3,
are then used to build, as described in Section 4.1. BoAy = B4:2, ByAg = C4:2, ByA;C, = B4:2 and

The conditional interitem tre€, for a given conditional ~ BoAoCy = C4:2.
base is found by constructing an FP-Tree of the interitem  Upon return from a recursive call EFP-Growth will up-
transactions inherited by the conditional base rule and us-date the immediate parent of each node whose item ID is
ing FP-Growth to mine the resulting tree. Taking the dot I such that the interitems are inherited and ready for con-
product of the conditional base and the set of interitem as-ditioning on the next frequent item. It is for this reason
sociations returned by FP-Growth produces the entire set ofthat the mining algorithm grows rules by recursing intosree
intertransaction associations related to the conditibaaé. conditioned on the least frequent intraitems first.

This process continues recursively until no more condi-  Returning to the original tre€ in Figure 1 the recursive
tional trees are built or until only a single intraitem path Mining technique will be applied in turn to the conditional
exists inT,. If 7. contains a single intraitem path we can bases gand B. The conditional tree%.|C, and7.|C, are
avoid recursion and find the complete set of rules given thegiven in Figure 2(d) and Figure 2(e) respectively.
conditional base by finding the dot product of the intraitem  IARs generated through EFP-Growth may be required to
combinations irll, and the interitem associations returned adhere to constraints present in the application domain. Fo
when calling FP-Growth on the interitem subtree. example, the association,B4 = C,:1 makes little sense

Although the example EFP-Tréein Figure 1 was built ~ When the intertransaction attribute of the items is tempo-
with a minimum support level of = 3, the support thresh-  ral and the rules are to be applied to prediction. In this
old will be set toar = 2 for mining the tree in order to ~ ¢ase we can reorder the items to produce the association

demonstrate the mining process in finer detail than is possi-BoC2 = Ca:1 without affecting the accuracy of the sup-
ble at the original support setting. port measure. The confide_nce measure of a reordgred rule
Conditioning 7 on A, we find the conditional prefix ~ €an be_ calcglgted by returning extra information during the
paths(By:1) and (By:3 Cy:3). The intertransaction items F€cursive mining step.
(C2:1C5:1 B4 :1Cy:1)  are  related to (Bo:1)
and the interitem$Cy:1B;:1A2:1B:1C:1Cs:l)and 5 Benchmark Comparisons
(C4:1 B4:1) are found forB:3 Cy:3). The conditional tree
T.|Ao with o = 2 is shown in Figure 2(a) and the interitem  Both synthetic data, employed to model the best and
FP-TreeT, |A, in Figure 2(b). worst case scenarios for association rule mining, and real
The set of intertransaction rules associated with the con-world data sets, to indicate the practical application ef th
ditional base A is found by taking the dot product of¢A  mining algorithms, were used to compare the computa-
and the interitem associations returned by FP-Growth fromtjonal performance and peak memory requirements of EFP-
the tree in Figure 2(b). The resulting rules arg A C,:3, Growth with FITI. These performance measures are impor-
Ag = B4:2,Ag = C4:2, A0Cy = By:2and AC, = Cy:2. tant as they empirically demonstrate the scalability of the
Recursing into the conditional tree in Figlre 2(a), EFP- algorithms on input data of varying characteristics. Fahea
Growth grows the conditional base by finding the least fre- data set the ability of the algorithms to scale with respect t
guent intraitem whose support meets the support thresholdhe length of the intertransaction window and a decreasing
for mining. This item, G, is prepended to Ato create  minimum support threshold is observed. [12] have previ-
the new conditional basey8, and the intratransaction rule  ously shown FITI to be computationally more efficient than
Co = A(:3. The single interitem prefix pat{B,:4) and EH-Apriori and so the latter algorithm is not considered in
its inherited interitemgC,:1 B4:1) and (Cy:1 C4:1) form this experiment.
to create the single intraitem path conditional tree shown  The real world data used [11] are event logs from an ar-
in Figure| 2(c). The inherited items of(B, are used to  ray of state-change sensors installed in the homes of two
build a single node FP-Tre€. containing G:2 resulting  volunteer subjects, a thirty year old working professional
in the generation of a single ruley8&, = C,:2 whenthe  and an eighty year old retiree, over a period of fourteen
dot product of the interitem associations found/inCoyA, days. The sensors, 77 in the first subject’s home and 84 in
and the conditional base is found. Recursively mining the the second, were fitted to a variety of appliances, contain-
tree in Figure 2(c) generates the rulesd3 = A(:2 and ers and furniture to log the times of use. These events were
BoCoAo = Ca:2. discretised for mining into transactions of five minute in-
The mining now returns t@.|A, to create the next con-  tervals to produce 658 transactions for the first subject and
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Figure 2. The conditional EFP-Tree treE. and conditional interitem FP-Tre€. for |(a) 7¢.|Ao, (b) T¢|A¢ and
T.|BoAo, |(c) Te|CoAy, |(d) T.|Cy and| (e)T.|Cy when the EFP-Tree in Figure 1 is mined with a minimum support
threshold ofx = 2.

748 transactions for the second. Unique sensor IDs werea fair comparison of the algorithms to be made, it having
stripped from the event logs to reduce the sensor informa-previously been shown that FP-Growth performs an order
tion to only include the sensor state and its room and ob- of magnitude faster than the Apriori algorithm used in the
ject context. For example, multiple sensors installed @n th original FITI implementation [3].

doors of a cabinet are reducedia chen/ Cabi net true The algorithms were implemented in Ruby, an inter-

andKi t chen/ Cabi net fal se events. The event code- preted language, and benchmarked on a 3.2GHz Pentium 4
books contained 76 and 80 entries for the first and secondrunning FreeBSD.

subjects respectively.

Two synthetic data sets representing sparse and densg 1 Limitations of the Benchmark Environment
data were generated using the method described in [6, 12],

the same method used to compare the EH-Apriori algorithm
to FITI. The data synthesis method is a two step process that Before discussing results, execution time irregularities
first generates a pool of candidate intertransaction associ should be noted in the EFP-Growth curve in Figure 5(a) at
tions and then uses this pool to populate the transactionakv = 2 and atw = 7. Irregularities also appear for FITI in
data set. The characteristics and features of the generateffigure 4(a) at the 1.1% support threshold, in Figure 4(b) at
data is defined by several parameters that guide the generalt% support and in Figure 5(b) at= 4.
tion process. These parameters include the size of the inter  Profiling revealed these irregularities are caused by an
transaction pool, the mean and maximum length of the in- erratic garbage collector in the Ruby interpreter. When trig
tertransaction associations, the maximum number of uniquegered, the garbage collector will spend a disproportignall
items that may be in the data set and the maximum intervallong time seeking memory to free.
span of the associations. Table 3 lists the parameters used This behaviour was consistently reproduced on the
to create the data sets used in the experimentation. FreeBSD 5.3, Linux 2.6 and Windows XP platforms us-
Intertransaction association rule mining in FITI occurs ing the 1.6 and 1.8 Ruby interpreter series. This behaviour
only after the set of frequent intratransaction assoaiatio is independent of the algorithm being run and was found
have been found. Knowledge of these rules is then usedpresentin the implementations of the EH-Apriori, FITI, FP-
to transform the database into a lookup structure that aidsGrowth and EFP-Growth algorithms. The garbage collec-
intertransaction mining. For this experiment, FITI was im- tor behaved normally for all other points on the graphs and
plemented using the FP-Tree and FP-Growth algorithm for hence the irregularities found do not invalidate the result
the initial mining phase. This was necessary in order for obtained.



Table 3. Parameters used in the generation of the synthetic spadssyathetic dense data sets.

] Parameter | Sparse| Dense)|

Number of intratransactions 500 200

Size of the intertransaction source pool 50 200
Average length of intratransactions 5 25
Maximum length of intratransactions 10 50
Average length of intertransactions 5 8
Maximum length of intertransactions 10 20

Maximum number of unique items in the data 500 100
Maximum interval span of intertransactior?t 4 6

5.2 Minimum Support Threshold the algorithms’ performance as the support threshold is low
ered from 1.5% to 0.7%. An order of magnitude difference
For the first set of results, the support threshold was grad-in the running times exists at the lower support levels due
ually lowered from 1.6% to 0.6% with a fixed intertransac- to the large number of discovered rules and a high num-
tion window size of 4 and from 13% to 8% with a fixed win- ber of FITI generated candidates. An exponential increase
dow size of 6 for the synthetic sparse and synthetic densein the number of rules discovered, shown in Figure 5(e), is
data sets respectively. reflected in a jump in the peak memory use of the two algo-
The plot in Figuré 3(a) shows FITI outperforming EFP- rithms. Both algorithms use similar amounts of memory up
Growth until the 1% support threshold is reached. FITI has until this point.
an advantage at the higher support thresholds as itis able to  Figure 4(b) depicts the execution time of EFP-Growth
remove unnecessary data prior to counting. This benefit isand FITI on the second real world data set over a support
reduced as the number of candidates generated by FITI inthreshold range of 0.4% to 1.3%. EFP-Growth is able to
creases when the support threshold is lowered. EFP-Growthnaintain its computational advantage over FITI at all sup-
outperforms FITI at the lower support thresholds and es- port levels. Memory use, shown in Figure 4(d), sees FITI
pecially at the 0.6% level where an explosion in the num- @gain having an advantage only at the higher support levels
ber of rules, as seen in Figure 3(e), results in an exponenwhere the number of rules, shown in Figure 6(f), and hence
tial increase in the number of candidate itemsets generatedhe number of candidates generated remains low.
and counted by FITI. The plot of the memory requirements
of the two algorithms in Figure 3(c) shows that although 5.3 Intertransaction Sliding Window Size
FITI has greatly reduced memory needs compared to EFP-
Growth at the higher support levels, it is the latter aldorit The intertransaction window size in Figuré 5 is incre-
that displays more stable memory use as the number of rulesnented fromw = 0 to w = 10 for the sparse data and
increases exponentially. FITI has lower memory require- w = 8 for the dense data with fixed minimum support
ments at the higher support levels because it is able to disthresholds of 1% and 10% respectively.
card many known infrequent associations which resultsina  Figurel 5(a) shows that EFP-Growth has only a marginal
low number of candidates being generated. computational advantage on the sparse data set, the number
We begin to see an order of magnitude difference in the of rules found and the number of candidates generated by
algorithm execution times on the dense data in Figure 3(b).FITI remaining relatively low. The memory requirements in
Although FITI marginally outperforms EFP-Growth at the Figure/ 5(c) are seen to be increasing at a similar pace with
12.5% and 13% support threshold, FITI is overwhelmed FITI requiring slightly less memory than EFP-Growth until
by the number of candidate itemsets generated at the lowerw = 9. Figure| 5(e) depicts the number of rules retrieved
thresholds. The memory requirements for the dense data setith each window size. FITI has similar execution times to
in Figure 3(d) shows FITI has an advantage at all but the 9% EFP-Growth on the dense data in Figure 5(b) set until the
and lower support levels. Here the memory usage contin-intertransaction sizer = 5. The curves begin to diverge at
ues to increase rapidly for FITI whereas the peak memory this point, the FITI execution time eventually being an arde
requirement of EFP-Growth remains stable. The numberof magnitude greater than EFP-Growthuat= 8. The FITI
of rules discovered at each support level are shown in Fig-memory needs, from Figure 5(d), are overall lower than that
ure| 4(f). for EFP-Growth but are growing exponentially with respect
The execution times in Figure 4(a) and peak memory us-to the sliding window size due to the number of candidate
age in Figure 4(c) for the first real world data set comparesitemsets being created. The number of rules mined at each
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Figure 3. The execution time (a), memory use (c) and the number of folewd (e) for the synthetic sparse data set
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