
An Extended Frequent Pattern Tree for Intertransaction
Association Rule Mining

Sebastian L̈uhr Geoff West Svetha Venkatesh
Institute for Multi-Sensor Processing and Content Analysis

Department of Computing, Curtin University of Technology, Perth, Western Australia
{S.Luhr, G.West, S.Venkatesh}@curtin.edu.au

Technical Report 2005/1
March 2005; Revised October 2007

Abstract

We propose the Extended Frequent Pattern Tree (EFP-
Tree) to address the problem of intertransaction associa-
tion rule mining where the frequent occurrence of a large
number of items results in a combinatorial explosion that
limits the practical application of the existing Apriori in-
spired mining algorithms in a smart home environment. The
EFP-Tree mining algorithm avoids candidate generation
by employing a divide and conquer approach that recur-
sively finds the set of frequent intertransaction association
rules. Empirical results comparing the computational per-
formance of the EFP-Tree with the First Intra Then Inter
(FITI) algorithm on real world data from a smart home are
presented. Experimental results show significant computa-
tional improvement of the EFP-Tree over FITI when a large
number of rules is present in the data.

1 Introduction

Intertransaction association rule mining [7] extends the
discovery ofintratransaction associations to include rela-
tionships that span transactions in one or more domain spe-
cific dimensions. The dimensional attribute may be, for ex-
ample, temporal in the prediction of stock market move-
ments or spatial in a GIS application. In our work, we seek
to find intertransaction associations from the event logs in
a smart home environment for the detection and analysis of
emergent human behaviours [8, 9]. Such an intelligent en-
vironment generates many sensor events over short periods
of time which results in dense data sets where the number of
frequently occurring events can be numerous. The existing
algorithms [6, 12] for the mining of intertransaction associ-

ations, or itemsets, have adopted the Apriori [1] approach
in which knowledge about the frequency ofk length item-
sets is used to restrict the search space in the discovery of
k + 1 length associations. These algorithms may generate a
large number of candidate itemsets, especially at lower sup-
port thresholds and in dense data sets where the number of
generated candidates may be vast. The computational com-
plexity of testing the frequency of the candidates, many of
which may be infrequent, can become intractable.

Addressing this issue, in this work we show how pattern
growth may be employed as an alternative to the Apriori
based approach for the mining of intertransaction associa-
tions using the Extended FP-Tree (EFP-Tree), an adapta-
tion of the Frequent Pattern Tree (FP-Tree) [4] to the in-
tertransaction association rule mining problem. The pattern
growth approach in the FP-Tree is a more computationally
efficient method for association rule mining that eliminates
the need for candidate itemset generation by first transpos-
ing a transactional database into a intermediate form that
aids subsequent mining. The FP-Tree structure and min-
ing algorithm, however, only finds frequent intratransaction
association rules and is not suitable to intertransaction rule
mining.

Experimental results showing significantly improved
computational performance over the FITI [12] algorithm on
synthetic dense data and on real world data captured in a
smart home are presented.

2 Related Work

The discovery of intertransaction association rules was
first proposed with the E-Apriori and EH-Apriori algo-
rithms [6]. These Apriori inspired approaches make mul-
tiple passes over the database to find the set of frequent as-

1

sociation rules, first generating and then searching for can-
didatek-itemset associations given known frequent (k−1)-
itemsets discovered in the previous pass. The generation
and then verification of the frequency of candidate itemsets
by these algorithms restricts their scalability as the number
of candidate itemsets generated may be prohibitive [4].

The First Intra Then Inter (FITI) algorithm [12] is a
more efficient E-Apriori-like algorithm that initially finds
the complete set of frequent intratransaction itemsets as a
basis for transforming the database into a structure that aids
subsequent mining of the intertransaction itemsets.

Intertransaction mining was reformulated in [5] to con-
sider the problem of mining frequent continuities, a type
of periodic pattern, from event sequences. The work in-
troduces frequent continuity mining as a special case of
intertransaction mining in which event sequences are rep-
resented as contiguous transactions of single event items.
The proposed PROjected Window Lists (PROWL) algo-
rithm was shown to outperform FITI when it was applied
to this special case.

Similar to our work is the use of event trees, an FP-
Tree like structure where event nodes are flagged as belong-
ing either to the current transaction or a future transaction
[10]. This was applied to finding relations between financial
events and stock market movement using event episodes.
In this work only the existence of events within the slid-
ing window is important, the ordering or temporal relation-
ship of events is not considered. In contrast, the EFP-Tree
specifically encodes these temporal relationships.

The FP-Tree has also been applied to the prediction of
rare events [2]. FP-Trees conditioned on the occurrence
of specific rare events in a transaction database were con-
structed using a codebook whose alphabet encodes both an
event and its temporal offset in relation to the event being
predicted. The standard FP-Growth algorithm was used to
mine the associations and the codebook used to recover the
frequent intertransaction associations occurring prior to the
event being conditioned on. This technique requires each
FP-Tree to be conditioned on a single rare event and can
not be efficiently applied to the general case intertransac-
tion association rule mining problem.

3 Intertransaction Association Rules

Intertransaction association rules describe associationre-
lationships that span outside traditional “market basket”in-
tratransaction items or events in one or more domain spe-
cific dimension. A video store, for example, may be in-
terested in how future rentals are influenced by the items
shoppers have borrowed in the past while a stock market
analyst may wish to find associations of market events to
predict movement in share prices.

Consider the set of all itemsI =
{

a1a2 . . . ai . . . aM
}

occurring in a databaseDB = 〈T1T2 . . . TN 〉 of transac-
tions Ti (1 ≤ i ≤ N) such thatTi (x) ∈ I ∀ itemsx in Ti.
At any transactionTi the items are said to form the set
STi

=
{

ai
Ti

. . . ak
Ti

}

. For the case of a single intertransac-
tion dimension attribute, an intertransaction sliding window
of sizew transactions is passed over the transactions inDB

to extract the extended transaction items such that the ex-
tended transaction atTi is ETi

= {STi
, STi+1 . . . STi+w}

and the set of all possible extended transaction items is
E =

{

a1
0a

2
0 . . . ai

d . . . aM
w

}

. The mining problem reduces
to the traditional intratransaction case whenw = 0, that
is, when only intratransaction items are included in an ex-
tended transaction itemset.

The superscript notation is dropped when the value of an
item is known. For example, the extended transaction items
retrieved with a sliding intertransaction window of sizew =
5 starting at transaction ID 300 from the example database
in Table 1 are C0, B0, A0, C2, E2, B3, E3, B4, and A4, given
that the dimensional attribute is the transaction time.

In this work we refer to the extended transaction items
{

a0
1 . . . a0

M

}

as intraitems and the extended transaction
items

{

a1
1 . . . aw

M

}

as interitems.
Intertransaction association rules are implication rules

such thatX ⇒ Y with the following properties [12]

X ⊆ E, Y ⊆ E (1)

∃a0
i ∈ X (2)

∃ad
i ∈ Y, d > 0 (3)

X ∩ Y = ∅ (4)

The support and confidence measures of an itemset are
calculated as|Txy|

N
and |Txy|

|Tx|
respectively where|Txy| is the

number of extended transactions containing all items inX∪
Y , |Tx| is the number of extended transactions containing
all items inX andN is the number of extended transactions.

4 Extended Frequent Pattern Tree

The proposed Extended Frequent Pattern Tree (EFP-
Tree) is a tree structure of descending frequency ordered
intraitem nodes with zero or one interitem Frequent Pattern
Tree (FP-Tree) subtrees where the frequency ordering of the
interitems is conditioned on the intratransaction item parent.
Each node in the tree contains an item ID which maps to a
codebook of item descriptors, a frequency counter, a link
to its parent node, links to zero or more children and a link
to the next node in the tree of the same item ID. Interitem
nodes also carry the dimensional offset of the item in rela-
tion to its intratransaction parent.

Nodes are placed into the tree such that the entire set of
frequent items for an arbitrary intertransaction can be re-
stored by traversing the tree. The ordering of nodes into de-
scending frequency increases the likelihood of items placed

2

Table 1. Example database with the unsorted and de-
scending frequency ordered items. The time at which
each transaction occurs is shown.

Trans. ID Time Raw Items Ordered Items
100 1 A C B B C A
200 2 B B
300 3 C A B B C A
400 5 E C C E
500 6 B E B E
600 7 A B B A
700 9 C C
800 10 C D B B C D
900 11 C B A B C A

Table 2. Extended transactions retrieved from the ex-
ample database in Table 1 using a sliding intertrans-
action window of sizew = 5.

Time Extended transaction items
1 B0 C0 A0 B1 B2 C2 A2 C4 E4 B5 E5

2 B0 B1 C1 A1 C3 E3 B4 E4 B5 A5

3 B0 C0 A0 C2 E2 B3 E3 B4 A4

5 C0 E0 B1 E1 B2 A2 C4 B5 C5 D5

6 B0 E0 B1 A1 C3 B4 C4 D4 B5 C5 A5

7 B0 A0 C2 B3 C3 D3 B4 C4 A4

9 C0 B1 C1 D1 B2 C2 A2

10 B0 C0 D0 B1 C1 A1

11 B0 C0 A0

into the tree sharing common nodes, creating a compact rep-
resentation of the database transactions that captures theas-
sociative relationship of the transaction items.

4.1 Tree Construction

Three passes, detailed in Algorithm 1, over a database
are required to build the tree structure. As in the FP-Tree,
the frequency of single items is gathered in an initial pass
over the database to build the set of frequent single in-
traitems, or 1-itemsets, and the set of frequent interitems
given a minimum support threshold. The intraitems are or-
dered by descending frequency to become the item lookup
header table for the intraitem tree. The frequent items are
those items whose frequency count is greater than or equal
to the minimum support thresholdα.

The intraitem FP-Tree is built and the conditional fre-
quencies of the interitems are found in the second pass.
The intraitems for each transactionTi are first filtered to re-

move items not present in the known frequent intraitem set
from the first pass and are sorted in order of descending fre-
quency. The ordered item list is recursively inserted into the
tree such that at each levell in the tree the child node with
the ID of thelth item in the ordered array is traversed and its
frequency count is incremented. Children nodes that do not
exist will be created prior to traversal and kept in codebook
ID order so that binary search can be used when traversing
the tree. The linked list of nodes of same item ID that orig-
inates from the root node header table is updated whenever
a new node is created. The frequency of the interitems rela-
tive toTi are incremented in the final intraitem node that is
traversed. The ordered lists of frequent intraitems are stored
for use in the third pass. The root node is said to be at level
l = 0.

The third and final pass over the database builds the in-
teritem sub-trees in the EFP-Tree structure. At each trans-
actionTi the cached ordered list of frequent intraitems are
used to traverse the intraitem tree and locate the intraitem
node that will become the root node of the interitem sub-
tree. The extended items within the intertransaction sliding
window atTi are filtered to remove known infrequent in-
teritems and the remaining items are sorted in order of lo-
cal descending frequency given the intraitem parent. The
ordered interitems are then recursively inserted into the in-
teritem subtree as before.

The example database in Table 1 and Table 2 is used to
demonstrate the construction of the EFP-Tree structure in
Figure 1 using a minimum support threshold ofα = 3 and
a sliding intertransaction window size ofw = 5.

The frequent items are found in the first pass over the
database from Table 2. The frequent intraitems found given
the minimum support thresholdα = 3 are B0:7, C0:6
and A0:4 with frequency counts of 7, 6 and 4 respectively.
The frequent interitems meeting the same minimum sup-
port threshold are A1:3, A2:3, B1:6, B2:3, B4:4, B5:4, C1:3,
C2:4, C3:3 and C4:4.

In the second pass, the intraitems B0, C0 and A0 are
added to the root node of an empty tree such that all nodes
are recursively created. The frequency of item B0 is incre-
mented by the next transaction. The items B0, C0 and A0

are then added again, the existing nodes are traversed and
their frequency counts are each incremented. The next two
transactions see the node C0 created as the second child of
the root node and an increment to the count of B0. B0 and
A0 are then added such that A0 becomes the second child
of B0 and the count of B0 is incremented once more. The
count of the nodes representing the intratransaction associ-
ations C0 and B0, C0 are incremented by the next two trans-
actions. Finally, the counts of the items in the path B0, C0,
A0 are once again incremented.

The third and final pass over the example database now
begins. The known frequent items found in the first pass

3

Key

root
Header Table

Intratransactions
Intertransaction

subtrees

Node Link
Intra-tree link
Inter-tree link

A0:4

B0:7

C0:6

A0:1

A0:3

A1:1 A1:2

A2:1

A2:2

B0:7

B1:1 B1:1 B1:2 B1:2

B2:1

B2:2

B4:1

B4:1

B4:2

B5:1

B5:1B5:2

C0:2

C0:4

C1:1

C1:1

C1:1

C2:1

C2:1 C2:2

C3:1

C3:2

C4:1

C4:1

C4:1 C4:1

Figure 1. The Extended FP-Tree for the example database withw = 5 andα = 3. Subscript numbers represent
the dimensional offset, in this case the item time, relativeto the intratransaction items while colon delineated numbers
depict the node frequency. The header tables of the intertransaction item subtrees have been omitted for clarity.

allow the extended transaction items at time 1 to be reduced
to B0, C0, A0, B1, A2, B2, C2, C4 and B5 given that the
items E4 and E5 are known to not meet the minimum sup-
port threshold. The interitems will be inserted at the node
identified by following the path B0, C0, A0. The insertion of
the ordered list of interitems from the first extended transac-
tion will create the children interitem nodes C2, B1, A2, B2,
C4 and B5. Next, the extended items at time 2 are reduced
to A1, B1, C1, C3, B4 and B5. The items are ordered and in-
serted as new children of B0. The nodes B0, C0 and A0 will
again be traversed at time 3. The child node C2 will then be
incremented and a new node for item B4 will be inserted as
a child of C2.

The interitems from Table 2 at time 5 are reduced to B1,
A2, B2, C4 and B5 and inserted as new children of C0. Next,
the interitems at time 6 are filtered and inserted as children
of B0 such that the counts of A1, B1, C3, B4 and B5 are
each incremented and the node C4 is inserted as a new child
of B5. At time 7 the intraitems B0 and A0 are traversed and

the interitems C2, C3, B4 and C4 are inserted as children
of A0. The next transaction at time 9 sees the count of the
nodes A2, B1 and B2, as children of C0, incremented and
the interitems C1 and C2 inserted as children of B2. Finally,
the nodes B0, C0 are traversed and the frequent interitems
from the extended transaction at time 10 are appended.

No interitems exist in the extended items in Table 2 at
time 11 so no further action is required.

4.2 Rule Mining

A method to extract the intertransaction associations
present in the EFP-Tree structure and to generate the IARs
is now required. As in the FP-Tree, retrieval of association
rules from the EFP-Tree is made possible by the pattern
growth property [3, 4]. Pattern growth uses a divide and
conquer approach that recursively builds the entire set of
frequent associations by constructing trees conditioned on
known frequent base rules and taking the dot product of the

4

Algorithm 4.1: EFP-Tree Construction
Input: Transaction DatabaseDB, sliding intertransaction window

sizemaxSpan, tree building support thresholdminSupport
Output: EFP-Treetree

Method:
// First Pass
Count the frequency of single items inDB to build the set of
frequent itemsF such that support(Fi) ≥ minSupport
(1≤ i ≤ |F|)

// Second Pass
Create the intratransaction root nodetree
For each intratransactiont in DB do

A← intratransaction items such thatAi ∈ F (1≤ i ≤ |A|)
ordered by descending frequency
I← count of intertransaction items| t, maxSpan
recursively insert the nodesA ontotreefinishing at node
interParent
interParent.interFreq← interParent.interFreq+ I

end

// Third Pass
For each intratransactiont in DB do

A← intratransaction items such thatAi ∈ F (1≤ i ≤ |A|)
ordered by descending frequency
interParent← intraitem node intreecorresponding toA
E← intertransaction items such thatEi ∈ F (1≤ i ≤ |E|)
ordered by descending frequency| leaf.interFreq
create the root nodeinterParent.interTree
recursively insert the nodesE onto interParent.interTree

end

frequent items in the conditional tree and the conditional
base itemset to produce new rules. These new rules then
become the conditional base for the next set of conditional
trees to be mined.

The Frequent Pattern Growth (FP-Growth) algorithm
from the FP-Tree differs to the Extended FP-Growth (EFP-
Growth) algorithm used to mine the EFP-Tree in that the lat-
ter must consider intertransaction relationship inheritance
along the intraitem nodes.

Property 4.1. (Intertransaction inheritance property)
Intratransaction item nodes inherit the intertransactionitem
relationships of their intratransaction item children.

Interitems are inserted into a subtree whose root node is
the last intraitem node traversed to when an extended trans-
action itemset is sorted into descending frequency order and
placed into the EFP-Tree. As a given interitem subtree can
only be reached by traversing the intraitem tree in the pres-
ence of all parent intraitem nodes it follows that the relation-
ship between an intraitem node and the items in the subtree
must apply to all nodes traversed to reach the intertransac-
tion item subtree.

Example 4.1. The extended transactionL = A0, B0, C0,
B1, C3 is inserted as an ordered item list into an empty tree.
The item nodes A0, B0 and C0 are created as a single branch
in the intraitem tree and the items B1 and C3 are in turn
inserted as interitem nodes as children of C0. Given Prop-

Algorithm 4.2: EFP-Growth
Input: EFP-TreeN , mining support thresholdα, sliding

intertransaction window sizemaxSpan
Output: Set of frequent rules
Method:

minedRules← ∅;
For each itemai in header table ofN from least to most
frequent such that support(ai) ≥ α do

Find the conditional prefix path and the extended items for
ai, propagate the intertransaction items of each occurrence
of ai to its parent and build the conditional EFP-TreeTc;
If Tc contains a single intratransaction pathP such that no
non-leaf node contains an intertransaction subtreethen

Tc← Tc with P removed;
singlePathRules← all combinations of
intratransaction nodes inP ;
singlePathRules← singlePathRules× rules returned
by call to FP-Growth(leaf node ofP, null) as in [4];

end
returnedRules← call EFP-Growth(Tc, α, maxSpan);
Build the intertransaction item FP-TreeTe using the
extended items fromai;
interRules← call FP-Growth(Te, null) as in [4];
ruleSet← returnedRules∪ interRules∪ singlePathRules;
For each ruleR ∈ ruleSetdo

addai to R with
support(R) = min(support(R) , support(ai));

end
addai to ruleSetwith support = frequency ofai in N ;
minedRules←minedRules∪ ruleSet;

end
Return minedRules

erty 4.1 we can infer that there exists a relation A0 ⇒ B1

which is known to exist as both A0 ∈ L and B1 ∈ L.

The EFP-Growth algorithm, detailed in Algorithm 4.2,
will now be described. Starting with an EFP-TreeT and an
empty conditional base, or rule suffix, EFP-Growth iterates
over the set of intraitemsI in T to build a conditional tree
Tc conditioned onI for each frequentI. At each recursion,
I is prepended to the conditional base to generate, or grow, a
new association rule and to build the conditional tree for the
next recursive step. No candidate generation is necessary as
the frequency of the items is stored in the tree structure and
all generated rules are guaranteed to be frequent.

Two types of conditional tree are used in EFP-Growth,
a conditional EFP-TreeTc used for finding the related
intraitems and interitems that can be used to extend the
present intraitem rule suffix and a FP-TreeTe of the in-
teritems inherited by the conditional base. This latter tree is
used to find the interitem associations for a given intraitem
rule suffix and is required as not all interitems inherited by
the conditional base may be included inTc.

Given a treeT , the conditional treeTc conditioned on
someI is found by collecting the set of extended transac-
tions formed through the union of the prefix path and the
inherited interitems for each node inT whose item ID isI
and whose immediate parent is an intraitem node. The pre-

5

fix path for any given node is the set of its parent nodes and
corresponding frequencies as stored in the EFP-Tree. All
nodes inT of item ID I are found by following the linked
list of “same item” ID nodes, the head of which is stored in
the intraitem header table ofT . The extended transactions
are then used to buildTc as described in Section 4.1.

The conditional interitem treeTe for a given conditional
base is found by constructing an FP-Tree of the interitem
transactions inherited by the conditional base rule and us-
ing FP-Growth to mine the resulting tree. Taking the dot
product of the conditional base and the set of interitem as-
sociations returned by FP-Growth produces the entire set of
intertransaction associations related to the conditionalbase.

This process continues recursively until no more condi-
tional trees are built or until only a single intraitem path
exists inTc. If Tc contains a single intraitem path we can
avoid recursion and find the complete set of rules given the
conditional base by finding the dot product of the intraitem
combinations inTc and the interitem associations returned
when calling FP-Growth on the interitem subtree.

Although the example EFP-TreeT in Figure 1 was built
with a minimum support level ofα = 3, the support thresh-
old will be set toα = 2 for mining the tree in order to
demonstrate the mining process in finer detail than is possi-
ble at the original support setting.

ConditioningT on A0, we find the conditional prefix
paths〈B0:1〉 and〈B0:3 C0:3〉. The intertransaction items
〈C2:1 C3:1 B4 :1C4:1〉 are related to 〈B0:1〉
and the interitems〈C2:1 B1:1 A2:1 B2:1 C4:1 C5:1〉 and
〈C2:1 B4:1〉 are found for〈B0:3 C0:3〉. The conditional tree
Tc|A0 with α = 2 is shown in Figure 2(a) and the interitem
FP-TreeTe|A0 in Figure 2(b).

The set of intertransaction rules associated with the con-
ditional base A0 is found by taking the dot product of A0
and the interitem associations returned by FP-Growth from
the tree in Figure 2(b). The resulting rules are A0 ⇒ C2:3,
A0 ⇒ B4:2, A0 ⇒ C4:2, A0C2 ⇒ B4:2 and A0C2 ⇒ C4:2.

Recursing into the conditional tree in Figure 2(a), EFP-
Growth grows the conditional base by finding the least fre-
quent intraitem whose support meets the support threshold
for mining. This item, C0, is prepended to A0 to create
the new conditional base C0A0 and the intratransaction rule
C0 ⇒ A0:3. The single interitem prefix path〈B0:4〉 and
its inherited interitems〈C2:1 B4:1〉 and 〈C2:1 C4:1〉 form
to create the single intraitem path conditional tree shown
in Figure 2(c). The inherited items of C0A0 are used to
build a single node FP-TreeTe containing C2:2 resulting
in the generation of a single rule C0A0 ⇒ C2:2 when the
dot product of the interitem associations found inTe|C0A0

and the conditional base is found. Recursively mining the
tree in Figure 2(c) generates the rules B0C0 ⇒ A0:2 and
B0C0A0 ⇒ C2:2.

The mining now returns toTc|A0 to create the next con-

ditional base B0A0 and generate its respective rule B0 ⇒
A0:4. No prefix path of B0A0 exists in Figure 2(a) so
no conditional treeTc|B0A0 needs to be built. The min-
ing of the interitem FP-TreeTe|B0A0, the same as for
Te|A0 in Figure 2(b), generates the rules B0A0 ⇒ C2:3,
B0A0 ⇒ B4:2, B0A0 ⇒ C4:2, B0A0C2 ⇒ B4:2 and
B0A0C2 ⇒ C4:2.

Upon return from a recursive call EFP-Growth will up-
date the immediate parent of each node whose item ID is
I such that the interitems are inherited and ready for con-
ditioning on the next frequent item. It is for this reason
that the mining algorithm grows rules by recursing into trees
conditioned on the least frequent intraitems first.

Returning to the original treeT in Figure 1 the recursive
mining technique will be applied in turn to the conditional
bases C0 and B0. The conditional treesTc|C0 andTe|C0 are
given in Figure 2(d) and Figure 2(e) respectively.

IARs generated through EFP-Growth may be required to
adhere to constraints present in the application domain. For
example, the association B0C4 ⇒ C2:1 makes little sense
when the intertransaction attribute of the items is tempo-
ral and the rules are to be applied to prediction. In this
case we can reorder the items to produce the association
B0C2 ⇒ C4:1 without affecting the accuracy of the sup-
port measure. The confidence measure of a reordered rule
can be calculated by returning extra information during the
recursive mining step.

5 Benchmark Comparisons

Both synthetic data, employed to model the best and
worst case scenarios for association rule mining, and real
world data sets, to indicate the practical application of the
mining algorithms, were used to compare the computa-
tional performance and peak memory requirements of EFP-
Growth with FITI. These performance measures are impor-
tant as they empirically demonstrate the scalability of the
algorithms on input data of varying characteristics. For each
data set the ability of the algorithms to scale with respect to
the length of the intertransaction window and a decreasing
minimum support threshold is observed. [12] have previ-
ously shown FITI to be computationally more efficient than
EH-Apriori and so the latter algorithm is not considered in
this experiment.

The real world data used [11] are event logs from an ar-
ray of state-change sensors installed in the homes of two
volunteer subjects, a thirty year old working professional
and an eighty year old retiree, over a period of fourteen
days. The sensors, 77 in the first subject’s home and 84 in
the second, were fitted to a variety of appliances, contain-
ers and furniture to log the times of use. These events were
discretised for mining into transactions of five minute in-
tervals to produce 658 transactions for the first subject and

6

root

C0:3

B0:4

B4:1 B4:1

C2:1 C2:2

C4:1

C4:1

(a)

root

B4:2

C2:3

C4:1

C4:1

(b)

root

B0:4

C2:2

(c)

root

B0:4

B1:2

C2:2

(d)

root

A2:3

B1:4

B2:3

B5:2

C1:1

C1:1

C2:1

C2:1

C4:2

(e)

Figure 2. The conditional EFP-Tree treeTc and conditional interitem FP-TreeTe for (a) Tc|A0, (b) Te|A0 and
Te|B0A0, (c) Tc|C0A0, (d) Tc|C0 and (e)Te|C0 when the EFP-Tree in Figure 1 is mined with a minimum support
threshold ofα = 2.

748 transactions for the second. Unique sensor IDs were
stripped from the event logs to reduce the sensor informa-
tion to only include the sensor state and its room and ob-
ject context. For example, multiple sensors installed on the
doors of a cabinet are reduced toKitchen/Cabinet true

and Kitchen/Cabinet false events. The event code-
books contained 76 and 80 entries for the first and second
subjects respectively.

Two synthetic data sets representing sparse and dense
data were generated using the method described in [6, 12],
the same method used to compare the EH-Apriori algorithm
to FITI. The data synthesis method is a two step process that
first generates a pool of candidate intertransaction associa-
tions and then uses this pool to populate the transactional
data set. The characteristics and features of the generated
data is defined by several parameters that guide the genera-
tion process. These parameters include the size of the inter-
transaction pool, the mean and maximum length of the in-
tertransaction associations, the maximum number of unique
items that may be in the data set and the maximum interval
span of the associations. Table 3 lists the parameters used
to create the data sets used in the experimentation.

Intertransaction association rule mining in FITI occurs
only after the set of frequent intratransaction associations
have been found. Knowledge of these rules is then used
to transform the database into a lookup structure that aids
intertransaction mining. For this experiment, FITI was im-
plemented using the FP-Tree and FP-Growth algorithm for
the initial mining phase. This was necessary in order for

a fair comparison of the algorithms to be made, it having
previously been shown that FP-Growth performs an order
of magnitude faster than the Apriori algorithm used in the
original FITI implementation [3].

The algorithms were implemented in Ruby, an inter-
preted language, and benchmarked on a 3.2GHz Pentium 4
running FreeBSD.

5.1 Limitations of the Benchmark Environment

Before discussing results, execution time irregularities
should be noted in the EFP-Growth curve in Figure 5(a) at
w = 2 and atw = 7. Irregularities also appear for FITI in
Figure 4(a) at the 1.1% support threshold, in Figure 4(b) at
1% support and in Figure 5(b) atw = 4.

Profiling revealed these irregularities are caused by an
erratic garbage collector in the Ruby interpreter. When trig-
gered, the garbage collector will spend a disproportionally
long time seeking memory to free.

This behaviour was consistently reproduced on the
FreeBSD 5.3, Linux 2.6 and Windows XP platforms us-
ing the 1.6 and 1.8 Ruby interpreter series. This behaviour
is independent of the algorithm being run and was found
present in the implementations of the EH-Apriori, FITI, FP-
Growth and EFP-Growth algorithms. The garbage collec-
tor behaved normally for all other points on the graphs and
hence the irregularities found do not invalidate the results
obtained.

7

Table 3. Parameters used in the generation of the synthetic sparse and synthetic dense data sets.
Parameter Sparse Dense

Number of intratransactions 500 200
Size of the intertransaction source pool 50 200

Average length of intratransactions 5 25
Maximum length of intratransactions 10 50
Average length of intertransactions 5 8

Maximum length of intertransactions 10 20
Maximum number of unique items in the data 500 100
Maximum interval span of intertransactions 4 6

5.2 Minimum Support Threshold

For the first set of results, the support threshold was grad-
ually lowered from 1.6% to 0.6% with a fixed intertransac-
tion window size of 4 and from 13% to 8% with a fixed win-
dow size of 6 for the synthetic sparse and synthetic dense
data sets respectively.

The plot in Figure 3(a) shows FITI outperforming EFP-
Growth until the 1% support threshold is reached. FITI has
an advantage at the higher support thresholds as it is able to
remove unnecessary data prior to counting. This benefit is
reduced as the number of candidates generated by FITI in-
creases when the support threshold is lowered. EFP-Growth
outperforms FITI at the lower support thresholds and es-
pecially at the 0.6% level where an explosion in the num-
ber of rules, as seen in Figure 3(e), results in an exponen-
tial increase in the number of candidate itemsets generated
and counted by FITI. The plot of the memory requirements
of the two algorithms in Figure 3(c) shows that although
FITI has greatly reduced memory needs compared to EFP-
Growth at the higher support levels, it is the latter algorithm
that displays more stable memory use as the number of rules
increases exponentially. FITI has lower memory require-
ments at the higher support levels because it is able to dis-
card many known infrequent associations which results in a
low number of candidates being generated.

We begin to see an order of magnitude difference in the
algorithm execution times on the dense data in Figure 3(b).
Although FITI marginally outperforms EFP-Growth at the
12.5% and 13% support threshold, FITI is overwhelmed
by the number of candidate itemsets generated at the lower
thresholds. The memory requirements for the dense data set
in Figure 3(d) shows FITI has an advantage at all but the 9%
and lower support levels. Here the memory usage contin-
ues to increase rapidly for FITI whereas the peak memory
requirement of EFP-Growth remains stable. The number
of rules discovered at each support level are shown in Fig-
ure 4(f).

The execution times in Figure 4(a) and peak memory us-
age in Figure 4(c) for the first real world data set compares

the algorithms’ performance as the support threshold is low-
ered from 1.5% to 0.7%. An order of magnitude difference
in the running times exists at the lower support levels due
to the large number of discovered rules and a high num-
ber of FITI generated candidates. An exponential increase
in the number of rules discovered, shown in Figure 5(e), is
reflected in a jump in the peak memory use of the two algo-
rithms. Both algorithms use similar amounts of memory up
until this point.

Figure 4(b) depicts the execution time of EFP-Growth
and FITI on the second real world data set over a support
threshold range of 0.4% to 1.3%. EFP-Growth is able to
maintain its computational advantage over FITI at all sup-
port levels. Memory use, shown in Figure 4(d), sees FITI
again having an advantage only at the higher support levels
where the number of rules, shown in Figure 6(f), and hence
the number of candidates generated remains low.

5.3 Intertransaction Sliding Window Size

The intertransaction window size in Figure 5 is incre-
mented fromw = 0 to w = 10 for the sparse data and
w = 8 for the dense data with fixed minimum support
thresholds of 1% and 10% respectively.

Figure 5(a) shows that EFP-Growth has only a marginal
computational advantage on the sparse data set, the number
of rules found and the number of candidates generated by
FITI remaining relatively low. The memory requirements in
Figure 5(c) are seen to be increasing at a similar pace with
FITI requiring slightly less memory than EFP-Growth until
w = 9. Figure 5(e) depicts the number of rules retrieved
with each window size. FITI has similar execution times to
EFP-Growth on the dense data in Figure 5(b) set until the
intertransaction sizew = 5. The curves begin to diverge at
this point, the FITI execution time eventually being an order
of magnitude greater than EFP-Growth atw = 8. The FITI
memory needs, from Figure 5(d), are overall lower than that
for EFP-Growth but are growing exponentially with respect
to the sliding window size due to the number of candidate
itemsets being created. The number of rules mined at each

8

 10

 100

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

, l
og

 s
ca

le
)

Support Threshold (%)

FITI with FP-Growth
EFP-Growth

(a)

 10

 100

 1000

 10000

 100000

 8 9 10 11 12 13

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

, l
og

 s
ca

le
)

Support Threshold (%)

FITI with FP-Growth
EFP-Growth

(b)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6

P
ea

k
M

em
or

y
U

se
 (

M
B

)

Support Threshold (%)

FITI with FP-Growth
EFP-Growth

(c)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 8 9 10 11 12 13

P
ea

k
M

em
or

y
U

se
 (

M
B

)

Support Threshold (%)

FITI with FP-Growth
EFP-Growth

(d)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0.4 0.6 0.8 1 1.2 1.4 1.6

N
um

be
r

of
 R

ul
es

Support Threshold (%)

(e)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 8 9 10 11 12 13

N
um

be
r

of
 R

uk
es

Support Threshold (%)

(f)

Figure 3. The execution time (a), memory use (c) and the number of rulesfound (e) for the synthetic sparse data set
with the intertransaction window size fixed atw = 4 and the execution time (b), memory use (d) and the number of
rules found (f) for the synthetic dense data set withw = 6 as the minimum support threshold is adjusted.

9

 10

 100

 1000

 10000

 100000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

, l
og

 s
ca

le
)

Support Threshold (%)

FITI with FP-Growth
EFP-Growth

(a)

 10

 100

 1000

 10000

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

, l
og

 s
ca

le
)

Support Threshold (%)

FITI with FP-Growth
EFP-Growth

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

P
ea

k
M

em
or

y
U

se
 (

M
B

)

Support Threshold (%)

FITI with FP-Growth
EFP-Growth

(c)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

P
ea

k
M

em
or

y
U

se
 (

M
B

)

Support Threshold (%)

FITI with FP-Growth
EFP-Growth

(d)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

N
um

be
r

of
 R

ul
es

Support Threshold (%)

(e)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

N
um

be
r

of
 R

ul
es

Support Threshold (%)

(f)

Figure 4. The execution time (a), memory use (c) and the number of rulesfound (e) for the working professional
subject and the execution time (b), memory use (d) and the number of rules found (f) for the retiree subject as the
minimum support threshold is adjusted. The intertransaction window size is fixed atw = 6 with an interval size of 300
seconds for both data sets.

10

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Intertransaction Window Size

FITI with FP-Growth
EFP-Growth

(a)

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

, l
og

 s
ca

le
)

Intertransaction Window Size

FITI with FP-Growth
EFP-Growth

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

P
ea

k
M

em
or

y
U

se
 (

M
B

)

Intertransaction Window Size

FITI with FP-Growth
EFP-Growth

(c)

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8

P
ea

k
M

em
or

y
U

se
 (

M
B

)

Intertransaction Window Size

FITI with FP-Growth
EFP-Growth

(d)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 2 4 6 8 10

N
um

be
r

of
 R

ul
es

Intertransaction Window Size

(e)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 R

ul
es

Intertransaction Window Size

(f)

Figure 5. The execution time (a), memory use (c) and the number of rulesfound (e) for the synthetic sparse data set
and the execution time (b), memory use (d) and the number of rules found (f) for the synthetic dense data set as the
intertransaction window size is increased. The minimum support level was fixed at 1% and 10% for the sparse and
dense data sets respectively.

11

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Intertransaction Window Size

FITI with FP-Growth
EFP-Growth

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Intertransaction Window Size

FITI with FP-Growth
EFP-Growth

(b)

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12

P
ea

k
M

em
or

y
U

se
 (

M
B

)

Intertransaction Window Size

FITI with FP-Growth
EFP-Growth

(c)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10 12

P
ea

k
M

em
or

y
U

se
 (

M
B

)

Intertransaction Window Size

FITI with FP-Growth
EFP-Growth

(d)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 2 4 6 8 10 12

N
um

be
r

of
 R

ul
es

Intertransaction Window Size

(e)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 2 4 6 8 10 12

N
um

be
r

of
 R

ul
es

Intertransaction Window Size

(f)

Figure 6. The execution time (a), memory use (c) and the number of rulesfound (e) for the working professional
subject with a minimum support thresholdα = 1% and the execution time (b), memory use (d) and the number of rules
found (f) for the retiree subject withα = 0.4% as the intertransaction window size is increased.

12

window size are given in Figure 5(f).
Performance on the real world data is compared by in-

crementing the sliding window size up tow = 12 to find
associations spanning up to an hour. The support thresholds
are fixed at 1% and 0.4% for the first and second data sets.

EFP-Growth outpaced FITI computationally in both real
world data sets in Figure 6(a) and Figure 6(b). A sudden
increase in the execution time of the FITI algorithm is seen
in Figure 6(b) when the sliding window size is increased
from w = 2 to w = 3. This increase is caused by a sudden
large jump in the number of rules being discovered as can be
seen in Figure 6(e). The memory requirements of the algo-
rithms remain similar untilw = 8 for both Figure 6(c) and
Figure 6(d). The EFP-Growth memory use remains stable
while FITI continues to increase linearly as the number of
rules, seen in Figure 6(e), being discovered begins to taper
off at this point.

6 Conclusion

The EFP-Tree and EFP-Growth algorithms for inter-
transaction association rule mining have been introduced
and experimental results comparing the computational per-
formance of EFP-Growth to the First Intra Then Inter (FITI)
algorithm have been presented.

EFP-Growth was shown to scale well, particularly with
the synthetic dense data set and data from the home of a real
world retiree where the presence of many frequent items re-
sults in a combinatorial explosion of candidate itemsets at
the lower support thresholds and with the larger intertrans-
action window sizes. The benefit gained by FITI by pruning
known infrequent intratransaction item combinations prior
to intertransaction mining is diminished when the number
of discovered rules and hence the number of candidate item-
sets that are required to be counted grow too large.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. InProc. 20th Int’l Conf. Very Large Data
Bases, pages 487–499, New York City, New York, USA,
August 1994.

[2] C. Berberidis, L. Angelis, and I. Vlahavas. PREVENT:
An algorithm for mining intertransactional patterns for the
prediction of rare events. InProc. Second Starting AI Re-
searchers’ Symposium, volume 9 ofFrontiers in Artificial
Intelligence and Applications. IOS Press, 2004.

[3] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. InProc. 2000 ACM SIGMOD Int’l
Conf. Management of Data, pages 1–12, 2000.

[4] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent pat-
terns without candidate generation: A frequent-pattern tree
approach.Data Mining and Knowledge Discovery, 8(1):53–
87, Jan 2004.

[5] K.-Y. Huang, C.-H. Chang, and K.-Z. Lin. PROWL: An
efficient frequent continuity mining algorithm on event se-
quences. InProc. Int’l Conf. Data Warehousing and Knowl-
edge Discovery, volume 3181 ofLecture Notes in Computer
Science, pages 351–360. Springer-Verlag, Nov 2004.

[6] H. Lu, L. Feng, and J. Han. Beyond intra-transaction associ-
ation analysis: Mining multi-dimensional inter-transaction
association rules. ACM Trans. Information Systems,
18(4):423–454, 2000.

[7] H. Lu, J. Han, and L. Feng. Stock movement prediction and
n-dimensional inter-transaction association rules. InProc.
SIGMOD Workshop on Research Issues on Data Mining and
Knowledge Discovery, pages 12:1–12:7, Seattle, Washing-
ton, USA, June 1998.

[8] S. Lühr, S. Venkatesh, and G. West. Emergent intertransac-
tion association rules for abnormality detection in intelligent
environments. InInt’l Conf. Intelligent Sensors, Sensor Net-
works and Information Processing, pages 343–347, Decem-
ber 2005.

[9] S. Lühr, G. West, and S. Venkatesh. Recognition of emer-
gent human behaviour in a smart home: A data mining
approach.Pervasive and Mobile Computing, 3(2):95–116,
March 2007.

[10] A. Ng and A. W. Fu. Mining frequent episodes for relat-
ing financial events and stock trends. InProc. Pacific-Asia
Conf. Advances in Knowledge Discovery and Data Mining,
volume 2637 ofLecture Notes in Computer Science, pages
27–39. Springer-Verlag, 2003.

[11] E. M. Tapia, S. S. Intille, and K. Larson. Activity recog-
nition in the home using simple and ubiquitous sensors.
In Int’l Conf. Pervasive Computing, volume 3001 ofLec-
ture Notes in Computer Science, pages 158–175. Springer-
Verlag, April 2004.

[12] A. K. H. Tung, H. Lu, J. Han, and L. Feng. Efficient mining
of intertransaction association rules.IEEE Trans. Knowl-
edge and Data Engineering, 15(1):43–56, 2003.

13

	Introduction
	Related Work
	Intertransaction Association Rules
	Extended Frequent Pattern Tree
	Tree Construction
	Rule Mining

	Benchmark Comparisons
	Limitations of the Benchmark Environment
	Minimum Support Threshold
	Intertransaction Sliding Window Size

	Conclusion

