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Abstract

Activity duration is an essential element in the accurate
modelling of human behaviour. The application of a stan-
dard hidden Markov Model (HMM) for the detection of ab-
normality in sequences of human activity can create a situ-
ation in which highly unusual duration less than or greater
than the duration normally observed can fail to be detected.
In this paper1, we show how the application of the explicit
state duration HMM can alleviate this problem, enabling us
to distinguish between sequences of activity in which the or-
der of observations is identical but the duration of activities
is different and to identify the presence of abnormal activity
duration. Experimental results highlight the improvement
over the standard HMM for both abnormality detection and
classification in certain anomalous situations.

1 Introduction

The deterioration of our cognitive and physical abilities
as we age is as inevitable as our resulting dependency on
third party care. Nursing homes and day carers traditionally
fulfil this need if our relatives are unable, or unwilling, to
look after us in our old age. The Intelligent Housing Project
at Curtin University of Technology seeks to create an in-
telligent environment that is capable of caring for its occu-
pants without the need for intrusive and costly third party
carers. The system aims to learn its occupants’ behavioural
patterns in order to provide cognitive support and to detect
abnormalities, potentially dangerous situations or emergen-
cies in order to take appropriate action.

One of the prerequisites to this task is the learning and
recognition of typical sequences of activities performed
throughout the day. Much of the current work in human
behaviour modelling concentrates on activity recognition,
recognising actions and events through pose, movement,
and gesture analysis. Our work focuses on learning and

1This technical report is an extended version of [5]. TR-2004/02.

detecting abnormality in higher level behavioural patterns.
The hidden Markov model (HMM) [9] is one approach for
learning such behaviours given a vision tracker recording
observations about a subject’s activity.

In this paper, we show how implicit state duration in the
HMM can create a situation in which highly abnormal de-
viation as either less than or more than the usually observed
activity duration can fail to be detected and how the explicit
state duration HMM (ESD-HMM) [10, 3, 9] helps allevi-
ate the problem. Duration of human activity is an impor-
tant consideration if we are to accurately model a person’s
behavioural patterns. We show that duration modelling en-
ables us to differentiate between activity sequences in which
the order of the observations is identical yet the duration
of the activities is varied. Although the explicit state dura-
tion HMM has been used extensively in the field of speech
recognition we believe its application to the domain of hu-
man activity recognition is novel.

The organisation of this paper is as follows. In Sec-
tion 2 we provide a brief overview of related work in the
recognition of human behaviours. A synopsis of state du-
ration HMM theory is given in Section 3. Section 4 and
Section 5 discuss our experimentation methodology and re-
sults respectively. Conclusions drawn from this work are
presented in Section 6.

2 Related Work in Modelling Behaviour

A hidden Markov model approach to learning the be-
havioural patterns of people in an office environment from
visual blob features was presented in [1]. An entropy min-
imisation technique was applied to learning the parame-
ters of the HMM. The resulting model was shown to have
greater discriminative capability in detecting anomalous be-
haviour in the order, tempo and timing of events than con-
ventionally trained HMM.

Coupled hidden Markov models (CHMMs), extensions
of the HMM for modelling independent yet interacting pro-
cesses, were used in a vision system to model the interac-
tions of people in an outdoor scene [8]. Models first trained



on data from synthetic agents and then updated using real
world data were able to detect and classify human interac-
tions with good results.

Nguyen et al [7] introduced a behaviour recognition sys-
tem based on analysis of trajectories using the abstract
HMM, an extension of the HMM in which the Markov
chain is replaced by a hierarchy of Markov chains. The
system was able to label behaviours at different levels of
resolution. On subsequent work the model was extended to
allow recognition of sequences [6].

A stochastic context free grammar (SCFG) parser for
identifying high level events in a car park was discussed
in [2]. A vision based tracker monitored the movement
of pedestrians and vehicles throughout the scene. Signifi-
cant changes in the spatio-temporal features of the tracked
objects were mapped to discrete events and passed to the
grammar parser for labelling.

The hierarchical HMM, a special case of SCFG, has sim-
ilarly been applied to learning and recognising simple se-
quences of human activity by observing a person’s proxim-
ity to areas of interest in a home scenario [4].

None of the above tackles the issue of duration.

3 Explicit State Duration HMM

In the standard HMM, state duration is implied as a func-
tion of a state’s self transition probability. Given a statei
and its self transition probabilityaii, we can show that the
likelihood of remaining in the state ford consecutive time
steps is exponential:

(aii)d−1 · (1 − aii) (1)

Explicit state duration [10, 3, 9] introduces into the
HMM the duration variablepi (d) such that1 ≤ d ≤ D
whereD constrains the maximum duration. In its non-
parametric formpi is a vector of discrete duration proba-
bilities such that

∑D
d=1 pi (d) = 1. The self transition prob-

abilities are tied so thataii = 0.

The model re-estimation formulas are presented in equa-
tions 6–9 given the path variables in equations 2–5 and the
sequence of observationsO1, O2 . . . Ot−1, OT produced
over time t such that1 ≤ t ≤ T and Ot ∈ V where
V = {v1, v2 . . . vM} is the set of possible observation sym-
bols.

For clarity, we use the notationλ = (A,B, P, π) given
the state transition distributionA = {aij}, the observation
likelihood distributionB = {bi (Ok)}, the state duration
distributionP = {Pi (d)} and the prior distributionπ =
{πi}.

αt (i) = Pr(O1, O2 . . . Ot, Si ends att|λ) (2)

α∗t (i) = Pr(O1, O2 . . . Ot, Si begins att + 1|λ) (3)

βt (i) = Pr(Ot+1 . . . OT |Si ends att, λ) (4)

β∗t (i) = Pr(Ot+1 . . . OT |Si begins att + 1, λ) (5)

π̂i =
πiβ

∗
0(i)

P (O|λ)
(6)

âij =
∑T

t=1 αt(i)aijβ
∗
t (j)∑N

j=1

∑T
t=1 αt(i)aijβ∗t (j)

(7)

4 Experimentation Methodology

We recorded 150 video sequences of normal activity in a
kitchen scenario using a single camera, each recording be-
longing to one of five normal classes of activity sequences
one might observe in a kitchen; preparing cereal, making
toast for breakfast, preparing or reheating dinner and cook-
ing a bacon and eggs breakfast.

Motion in the room was segmented using a robust tracker
[11] and a Kalman filter was employed to track moving ob-
jects between frames. The position of a subject’s feet as ap-
proximated by taking the centre of the bottom of the tracker
supplied bounding box was used to calculate the proximity
of the person to defined areas of interest in the room; the
stove, the kitchen bench, the sink, a fridge and the door.
The discrete observationsstove , bench , sink , fridge

anddoor mapping to these areas were recorded if the sub-
ject was in close proximity else anundefined observation
was logged. One such observation is recorded every one
and a half seconds from the 25fps video. The duration of
the video sequences ranged from 30 to 300 seconds with an
average length of circa 90 seconds. Although a richer set of
features from multiple camera angles would be beneficial in
a real world deployment, we found these observations ade-
quate for demonstrating the ideas behind this work.

4.1 Normal Activity Sequences

The five classes of normal behaviour were designed to
highlight the importance of modelling duration given the
limitations of the tracking system. That is, using an impov-
erished observation set, the classes would have the same
sequence of observations but would differ in the duration
spent in a location.

The first two classes, preparing cereal and making toast
for breakfast, are identical in the order that the areas of in-
terest in the room are visited by the person under observa-
tion. Hence, given that the order of observations returned
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b̂i(k) =

∑T
t=1

s.t.Ot=k

[(
πiβ

∗
0(i) +

∑t−1
τ=1 α∗τ (i)β∗τ

)
−

(∑t−1
τ=1 ατ (i)βτ (i)

)]
∑M

k=1

∑T
t=1

s.t.Ot=vk

[(
πiβ∗0(i) +

∑t−1
τ=1 α∗τ (i)β∗τ

)
−

(∑t−1
τ=1 ατ (i)βτ (i)

)] (8)

p̂i(d) =
πipi (d) βd(i)

∏d
s=1 bi (Os) +

∑T−d
t=1 α∗t (i) pi (d)βt+d (i)

∏t+d
s=t+1 bi (Os)∑D

d=1

[
πipi(d)βd(i)

∏d
s=1 bi(Os) +

∑T−d
t=1 α∗t (i) pi (d)βt+d (i)

∏t+d
s=t+1 bi (Os)

] (9)

by the tracker are[door , fridge , bench , sink , bench ,
fridge , door ] it is only possible to distinguish between
the two classes by observing the time spent at the kitchen
bench, the act of making toast taking considerably longer
than the preparation of a bowl of cereal.

Similarly, the dinner preparation and reheating classes
consist of the activities[door , fridge , bench , stove ,
door ], the classes differing only in the duration spent stand-
ing by the stove. The fifth class is made up of the activi-
ties[door , fridge , bench , sink , bench , stove , fridge ,
door ] and was included because it differs to the other
classes in both the activity duration and the order in which
the activities are performed. The recorded video sequences
were evenly distributed among the five classes.

4.2 Abnormal Activity Sequences

A further 24 sequences of abnormal behaviour were
recorded. The abnormal sequences differ from the normal
only in terms of activity duration, either shorter or longer
than the durations seen in the normal classes, not in the or-
der or type of activities seen.

4.3 Model Selection

Each normal class was modelled using a standard fully
connected HMM, a left-right HMM, a fully connected ex-
plicit state duration HMM (ESD-HMM) and a left-right
ESD-HMM. The left-right models were chosen to investi-
gate how constraining the state transitions would affect clas-
sification and abnormality detection by preventing the mod-
els from treating duration as a cyclic activity. The HMM
was selected as a baseline for comparison. The models were
trained on a random sample of 60% of the normal activity
sequences and tested on the remainder. To keep the com-
parison fair, an optimal number of states for each model
was empirically selected based on classification accuracy.

A single Gaussian distribution was used to estimate the
duration probabilities in the ESD-HMM case, the model
otherwise requiring an unrealistic amount of training data
to accurately estimate the state duration probabilities.

5 Results

First we compare the classification accuracy of the var-
ious models. Duration abnormality detection is then dis-
cussed. Finally, we examine how the models function under
varying degrees of duration abnormality.

5.1 Sequence Classification

Classification accuracy and the optimal number of states
for each of the four models are presented in Figure 5. The
models were trained on 60% of the normal activity se-
quences and tested on the remainder.

The HMM was found to be the weakest model for classi-
fication. Its low score is attributed to dynamic time warping,
a property which renders it unsuitable for use as a classifier
given the type of observation sequences used in this experi-
ment. This is also evident in its relatively poor classification
of the original training data.

Forcing the HMM to be a left-right model, that is
Aij = 0 for all j < i, appears to improve classification ac-
curacy with near perfect results. Although the two state left-
right HMM performed well empirically, the limited num-
ber of parameters is inadequate to properly encode the se-
quences and hence discriminate between classes. Confusion
between the similar activity classes is shown in Figure 2(a).

The ESD-HMM, in contrast, appears to perform well
given no state transition restrictions, providing no room
for further improvement when left-right constraints are im-
posed. Explicit duration allows the model to clearly differ-
entiate between all classes. The confusion matrix for the

Model # States Training Testing

HMM 12 93.75% 81.43%

Left-right HMM 2 98.75% 97%

ESD-HMM 3 100% 100%

Left-right ESD-HMM 2 98.75% 100%

Figure 1. The optimal number of states and classification
accuracy for both the training and the test sequences for
each of the four model types.
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Cereal Toast Cook Reheat Bacon

Dinner Dinner & Eggs

Cereal 11 3 0 0 0

Toast 0 14 0 0 0

Cook Dinner 0 0 10 4 0

Reheat Dinner 0 0 6 7 0

Bacon & Eggs 0 0 0 0 14

(a)

Cereal Toast Cook Reheat Bacon

Dinner Dinner & Eggs

Cereal 14 0 0 0 0

Toast 0 14 0 0 0

Cook Dinner 0 0 14 0 0

Reheat Dinner 0 0 0 14 0

Bacon & Eggs 0 0 0 0 14

(b)

Figure 2. Test sequence confusion matrix for (a) the twelve state standard HMM and (b) both the three state ESD-HMM and the
two state left-right ESD-HMM.
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Figure 3. ROC curves for (a) the twelve state HMM, (b) the two state left-right HMM, (c) the three state ESD-HMM and (d) the
two state left-right ESD-HMM.

explicit state duration models is presented in Figure 2(b).

5.2 Duration Abnormality

We wish to classify unseen observation sequences as ei-
ther normal or abnormal. We do so by querying each of the
trained models on the likelihood of generating a given se-
quence and then thresholding on the highest log likelihood
returned. The log likelihoods are normalised by the total
length of the observation sequence so that a global thresh-
old may be applied regardless of sequence length. Receiver
operator characteristic (ROC) curves were used to investi-
gate the suitability of each of the models as a detector of
abnormality. The observation sequences used in this exper-
iment consisted of the set of unseen normal sequences and
the abnormal sequences described in Section 4.

The ROC curves in Figure 3(a) and Figure 3(b) for the
HMM and the left-right HMM respectively suggest that
neither model is able to reliably differentiate between our
normal and abnormal sequences using the thresholding ap-
proach.

The ROC curve for the ESD-HMM displays better re-
sults, Figure 3(c) showing the true positive rate increasing
more rapidly than the false positive rate. The use of explicit
state duration has increased the reliability of the HMM in

the detection of abnormality due to the presence of unusual
activity duration. The main cause of the remaining misclas-
sification was found to be due to the model freely transition-
ing between states. The model will temporarily enter a state
with sub-optimal emission probabilities prior to returning to
the original state so as to maximise the state duration likeli-
hoods over the entire length of a given sequence.

Further improvement is seen when the transition con-
straints of the two state left-right ESD-HMM are imposed
as evidenced by the steep ascent of the true positive rate in
Figure 3(d).

An analysis of errors showed that two of the normal ac-
tivity sequences had been misclassified by the explicit state
duration models because they contained a noisy observa-
tion, uncommon and not present in the training data, in the
middle of a typically long activity. The models were forced
to make a transition to another state in order to emit the
rogue observation, the transition resulting in very low state
duration probabilities.

5.3 Longer Term Duration Abnormality

To investigate the ability of the models to detect longer
term abnormal duration we artificially varied the time spent
at a primary activity, standing near the kitchen bench, in a
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Figure 4. The normalised log likelihood for each of the
models as the primary activity in an observation sequence
is varied from one second to five minutes. The normal du-
ration for the primary activity is circa 40 seconds. Only
the left-right ESD-HMM is able to detect abnormality in a
timely manner.

randomly selected test sequence from the first activity class.
The time spent at the kitchen bench was varied from one
second to five minutes. The usual time for a subject to re-
main at the kitchen bench is circa forty seconds.

The likelihood, normalised by the length of the obser-
vation sequence, of the modified activity sequence being
generated by each of the standard HMM, left -right HMM,
ESD-HMM and left-right ESD-HMM was plotted over the
duration period and is presented as Figure 4.

The figure shows the normalised log-likelihood returned
by the HMM and the left-right HMM increasing with the
time spent at the primary activity due to dynamic time warp-
ing. The HMM and left-right HMM are therefore not suit-
able for the detection of highly abnormal activity duration.

The ESD-HMM exhibits a similar trend. The lack of
transition constraints allows the model to temporarily enter
a state with a sub-optimal emission probability in order to
maximise the state duration likelihoods.

The left-right ESD-HMM behaves correctly given the in-
tention of our system as the model is unable to explain away
highly abnormal duration as a cyclic activity and thus iden-
tify them as abnormal. The curve is seen to drop rapidly as
the time spent at the kitchen bench increases.

6 Conclusion

Experimental results highlighting the importance of ex-
plicit duration modelling for correct classification of se-

quences of human activity and the reliable and timely de-
tection of duration abnormality have been presented. It has
been shown that explicit duration modelling with the addi-
tion of left-right transition constraints are necessary if we
are to identify abnormality in activity duration using the ex-
plicit state duration HMM.

The incorporation of duration in models of human be-
haviour is an important consideration for intelligent envi-
ronments seeking to provide cognitive support and to detect
deviation in the day-to-day behavioural patterns of the el-
derly.
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