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Abstract. Advances in data acquisition have allowed large data collec-
tions of millions of time varying records in the form of data streams. The
challenge is to effectively process the stream data with limited resources
while maintaining sufficient historical information to define the changes
and patterns over time. This paper describes an evidence-based approach
that uses representative points to incrementally process stream data by
using a graph based method to cluster points based on connectivity and
density. Critical cluster features are archived in repositories to allow the
algorithm to cope with recurrent information and to provide a rich his-
tory of relevant cluster changes if analysis of past data is required. We
demonstrate our work with both synthetic and real world data sets.

1 Introduction
Stream mining is an increasingly important area of research that aims to discover
interesting information from continually evolving data sets whose size, combined
with limitations in available memory and computational resources, typically con-
strains our ability to perform timely batch processing of the data. Instead, we
desire means by which to incrementally maintain current and historical models
of the data with which to perform queries. Stream data mining has been heavily
investigated in the past five years with most efforts concentrated on the cluster-
ing aspect of the problem. Of the algorithms developed, however, only a small
number can handle difficult clustering tasks without expert help, typically pro-
vided in the form of the number of partitions expected or the expected density
of clusters. Moreover, none of these attempt to build a selective history to track
the underlying changes in the clusters observed.

We present a sparse-graph based stream mining approach that employs repre-
sentative cluster points to incrementally process incoming data. The graph based
description is used because it allows us to model the spatio-temporal relation-
ships in a data stream more accurately than is possible via summary statistics. A
critical aspect of our research has been to avoid rediscovery of previously learned
patterns by reusing useful cluster information. For this reason, a repository of
knowledge is used to capture the history of the relevant changes occurring in the
clusters over time. The use of the repository offers two major benefits.

First, the algorithm can handle recurrent changes in the clusters more ef-
fectively by storing a concise representation of persistent and consistent cluster



features. These features assist in the classification of new data points belonging
to historical cluster distributions within an evolving data stream. The retention
of such features is important as they permit the algorithm to discard older data
points in order to adhere to constraints in available memory and computational
resources while continuing to store useful cluster features.

Second, the repository provides a concise knowledge collection that can be
used to rebuild a cluster’s overall shape and data distribution history. It is there-
fore possible to archive core cluster features for future off-line analysis when a
recall of historical changes is desired.

2 Related Work
Several important stream mining algorithms have been introduced in recent
years. One of the first data stream mining methods to consider the archival
of cluster information was CluStream [1]. The algorithm uses microclusters to
capture and record statistical summary information suitable for off-line analysis.
CluStream is, however, best suited to situations in which clusters are spherical,
reducing the algorithm’s suitability to many real world data sets.

HPStream, a modification of CluStream to enable clustering of high dimen-
sional data, was proposed in [2]. The algorithm employs a data projection method
to reduce the dimensionality of the data stream to a subset of dimensions that
minimise the radius of cluster groupings. However, the underlying assumption
remains that clusters in the projected space remain spherical in nature.

Most recently, a multi-density clustering technique that extends the DB-
SCAN [3] density-based clustering approach to stream mining was proposed
in [4]. The algorithm, DenStream, extends DBSCAN by adapting the original
density based connectivity search to a microcluster approach.

An incremental version of the DBSCAN was earlier proposed in [5]. As with
DBSCAN, the algorithm obtains groupings based on the nearest neighbour-
hood connectivity of points within an a priori defined radius known as the ε-
neighbourhood. Incremental DBSCAN is limited to keeping only the most recent
data points in memory and is therefore likely to discard possibly reusable cluster
information without consideration towards its value.

A well known algorithm, Chameleon [6] uses the hMeTiS [7] multilevel graph
partitioning algorithm to recursively divide a sparse graph into micro-clusters.
These clusters are then iteratively merged based on user specified thresholds for
measures of relative interconnectivity and closeness.

None of the algorithms mentioned provide a means to selectively archive
historical information. Those algorithms that facilitate archiving instead tend to
store summary statistics with which general changes in clusters can be revisited.

3 Clustering Stream Data via Representative Points
Our cluster representation involves the use of dynamically updated sparse graphs
that, when used in conjunction with a repository of representative vertices, allows
us to rebuild a cluster’s history and to rapidly adapt to significant changes previ-
ously observed. The RepStream algorithm that we propose aims to capture such
change in order to recall it at some future time should the change reoccur. Rep-
Stream is a single phase incremental algorithm that updates two sparse graphs
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of k-nearest neighbour connected vertices in order to identify clusters among
data points. The first graph captures the connectivity relationship amongst the
most recently seen data points and to select a set of representative vertices. The
second graph is used to track the connectivity between the chosen representa-
tive vertices. The connectivity of the representative vertices on both graphs then
forms the basis for the algorithm’s clustering decision making.

The representatives we use offer two major advantages. First, since represen-
tative vertices typify a set of nearby data points, decisions made at this level
improves performance by requiring only a subset of the data to be considered.
Second, representative vertices are associated with a measure of usefulness which
allows the algorithm to selectively retain highly valued representatives as his-
torical descriptors of the cluster structures. This retention allows the algorithm
to accurately classify new data points arriving within a region of the clustering
space where the non-representative vertices have since been retired.

3.1 Preliminaries

Given a data stream P of time ordered points P = {p1, . . . p|P |}, we wish to
find groupings of points sharing similar properties. We define a cluster c to be
a set of points c = {p1 . . . p|c|} where each point pi is a multidimensional vector
pi = {pi,1 . . . pi,D} of D dimensions. Let C be the set of clusters C = {c1 . . . c|C|}.

Let the set G = {g1 . . . g|P |} be the ideal cluster assignments for points P

such that the jth element gj correctly labels point pj . We aim to assign labels to
data points such that each point is correctly classified or any misclassification is
minimised. The distance between point pi and point pj is given as D (pi, pj).

Points are inserted into a directed k-nearest neighbour (K-NN) sparse graph
SG (V,E) of vertices V = {v1, . . . v|V |} and edges E = {e1, . . . e|E|} such that the
ith vertex vi corresponds to point pi ∈ P . Each edge is an ordered pair 〈u, v〉
of vertices such that u, v ∈ V . The sparse graph representation is used as it
provides a rich representation of relationships that is otherwise not available by
only labelling data points.

Updates to the sparse graph requires knowledge of each vertex’s nearest
neighbours. Let NN (vi) be a function that provides an ascending distance or-
dered array of the nearest neighbours of a vertex vi and let NN (vi, j) be a
function that gives the jth nearest neighbour of vi. Let RC(vi) be a function
that provides a set of vertices reciprocally connected to a vertex vi. We also let
IE(vi) be a function for determining the incoming edges directed at vertex vi.

Let R = {r1, . . . r|R|} be a set of representative vertices on SG such that
∀x, rx ∈ V and let RSG (W,F ) be a directed k-nearest neighbour repre-
sentative sparse graph which links the vertices W = {w1, . . . w|W |} via edges
F = {f1, . . . f|F |}. An edge in F is an ordered pair 〈u, v〉 of vertices such that
v, u ∈ R. Let NNR(ri), NNR (ri, j) and RCR(ri) be functions that provide the
nearest neighbours, the nearest jth neighbour and the set of vertices that are
reciprocally linked to a representative vertex ri on RSG.

Definition (predictor) Let a representative ri be a predictor if ri satisfies the
condition that |IE(ri)| < k

2 .
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Definition (exemplar) Let a representative ri be an exemplar if ri satisfies the
condition that |IE(ri)| ≥ k

2 .

Definition (representative vertex) Representative vertices represent at most k
non-representative vertices on the sparse graph SG. A vertex vi is made repre-
sentative if at any time @j, vj ∈ RC(vi), vj ∈ R, that is, if it is not reciprocally
connected to an existing representative. Representatives are further categorised
into a set of exemplar representatives RE = {rE

1 , . . . rP
|RE |} and predictor repre-

sentatives RP = {rP
1 , . . . rP

|RP |} such that RP ∪ RE = R and RP ∩ RE = ∅.

Clustering decisions in RepStream are made via vertices representative of regions
within the cluster space. At each time step a new point pi is observed in the data
stream and added to the sparse graph SG(V,E) as vertex vi. A new vertex joins
an existing cluster if it is reciprocally connected to a representative vj ∈ R.
Should no such representative vertex exist then vi is itself made representative.
The creation of the new cluster may trigger an immediate merge with an existing
cluster if the conditions for merging are met.

3.2 Merging and Splitting Clusters
Cluster splits and merges are made by monitoring both the reciprocal connectiv-
ity of vertices on the representative sparse graph as well as their relative density
based on the proximity of their nearest neighbours on SG. The trigger condition
for either of these events is the creation or removal of density-related links.

Definition (relative density) The density of representative vertex ri ∈ R is
determined by the function RD (ri) = 1

|NN(ri)|
∑|NN(ri)|

j=1 D (ri,NN (ri, j)).

Definition (density-related) Given a density scaler α, two representatives ri

and rj are density-related if: D (ri, rj) ≤ RD (ri) · α, and D (ri, rj) ≤ RD (rj) · α
and rj ∈ RCR (ri).

Merges are therefore triggered when an update to the connectivity of vertices
on RSG sees the creation of a new reciprocal connection that is also density-
relate or when the addition or removal of a vertex affects the density of two
existing representatives that are reciprocally connected such that their density-
related status is altered. Monitoring the connectivity and relative density of
representatives enables the algorithm to evolve with changes in the data.

Split checks are executed when the loss of a density-related link between two
vertices on RSG is detected. A standard O(n2) region growing algorithm that
follows the density-related links of the representative vertices was employed to
perform split checks.

3.3 Knowledge Repository
A significant aim of RepStream is to retain those representative vertices that
prove, over time, to be useful in representing the shapes and distributions of
clusters. Such vertices are retained for as long as possible (subject to available re-
sources) via a repository defined as an ordered vector of vertices S =

〈
s1, . . . s|S|

〉
sorted in ascending usefulness.
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Definition (representative usefulness) The usefulness of a representative ver-
tex ri is defined by the decay function: usefulness(ri, count) = log(λ) · (current
time − creationTime(ri) + 1) + log(count + 1). Here λ is a user specified decay
rate and count is the representative vertex’s reinforcement count. This count is
incremented when an incoming vertex is found to be a nearest neighbour of ri.
The decay function ensures a monotonic ordering of vertices in the repository
with respect to the passing of time. In our implementation of RepStream we
chose to index the repository using a AVL binary search tree [8]. Updating the
reinforcement count of a representative vertex that has already been added to
the repository requires only two tree operations: the removal of the vertex and
then its subsequent reinsertion following an increment to its reinforcement count.
The least useful representative vertex can be rapidly found by traversing to the
AVL tree node with the lowest usefulness score.

New additions to the repository are made whenever a new representative
vertex is created until resource constraints have been reached. At this point only
the most useful repository members are retained. This is achieved by comparing
the least useful repository member with other non-repository representatives
whenever their reinforcement count is incremented. Vertices retired from the
repository are immediately unlinked from both graphs and archived to disk.

3.4 Singularities
The occurrence of many identical points within a data stream is captured via
singularities, a special case of representative vertices intended to succinctly and
efficiently represent such occurrences.
Definition (singularity) A representative vertex ri ∈ R is termed a singularity
when

∑k
j=1 D (ri,NN (ri, j)) = 0 and |NN (ri)| = k.

Singularities represent a collection of identical points that offer no new infor-
mation to the clustering process, yet whose inclusion in the sparse graphs would
require the retirement of otherwise useful vertices. New points that are identical
to a singularity are therefore immediately deleted in order to avoid the overhead
of unnecessary sparse graph updates and to maintain the information value of
the repository. The occurrence of identical points is not lost, however, as they
are represented by a singularity’s reinforcement count.

Singularities are unable to be assigned non-zero density measures and as
such do not lose their singularity status once it is acquired. This ensures that
the presence of a singularity is permanently captured by the algorithm even
though its nearest neighbours may be retired over time. Representative vertices
are unable to form density-related links to singularity vertices.

3.5 Data Retirement
Processing and memory constraints require the algorithm to discard information
over time. This is accomplished by prioritising the disposal of data such that the
least useful information for clustering is removed first. Non-representative ver-
tices are queued on a first in, first out basis and removed whenever resource
limitations are reached. Representative vertices that are not stored in the repos-
itory are considered to have little retentive value and are also removed via the
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deletion queue. All other representative vertices remain in memory; their deletion
is instead managed via the repository update procedure.

The removal of a vertex requires updates to the sparse graph and the repre-
sentative sparse graph. Graph updates are made to ensure that any vertices with
edges directed at the removed vertex are updated with a new nearest neighbour.
Representative vertices are also updated to ensure that their local density is
adequately maintained.

4 Experimental Results

The performance of RepStream was evaluated using synthetic and real world
data sets. Our real world data sets consisted of the KDD-99 Cup network intru-
sion data and the forest canopy type data described in [9]. The synthetic data
was designed to test the algorithm’s capacity to cluster a difficult set contain-
ing a variety of arbitrarily shaped clusters of different densities. The real world
data sets, in contrast, were selected to investigate the practical application of
the approach on large evolving data streams.

Cluster purity [10] was used to measure how well data is classified over a
horizon of the previous h data points. The purity of a cluster ci is defined as:
CP(ci) = 1

|ci| maxk(
∑|ci|

j=1 r(vj , k)) where r(vj , k) is 1 if class(vj) = k, else 0.
The total clustering purity is then found by averaging over all clusters via:

TCP(C) = 1
|C|

∑|C|
i=1 CP(ci).

The algorithm was constrained to using only 10 MiB of memory and the decay
factor used in all experiments was set to λ = 0.99. The chosen purity horizons
were selected to correspond with previous work in clustering data streams [1, 2].
The KD-Tree [11] was used to perform nearest neighbour searches.

4.1 Synthetic Data

The clustering quality of RepStream was first compared against an incremental
version of DBSCAN [5] using the hand crafted synthetic data set. DBSCAN
was selected for comparison as this algorithm employs a density based method
of clustering known to perform well with arbitrarily shaped clusters. However,
DBSCAN is limited to operating at a single density and is therefore expected
to exhibit difficulties when dealing with this data set. As DBSCAN relies on a
priori knowledge of the optimal cluster density, we repeated each of the DBSCAN
experiments using a variety of values for ε. The minimum number of points
required to form a cluster was set to 5. The data was presented to the algorithms
using a randomised point ordering and the Manhattan distance was used to
compute the similarity between points.

Figure 1 depicts the RepStream clustering of the data using the optimal
parameter set k = 4 and α = 4.0. These results show that the algorithm was
able to cluster the arbitrarily shaped clusters well. The discovered clusters are
sub-optimal, however, with some minor fragmentation evident. The separate
clustering of these points is not considered an error, however, as their location
and density suggests that these points may, indeed, belong to separate clusters
when compared to the remaining points.
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(a) (b)

Fig. 1: RepStream clustering of the synthetic data highlighting the performance differ-
ence between a neighbourhood connectivity of (a) k = 4 and (b) k = 5 when α = 4.0.

(a) (b)

Fig. 2: DBSCAN clustering of the synthetic data set with (a) ε = 15 and (b) ε = 16.

Increasing the density scaler from α = 4.0 to a higher value of α = 6.0 did
not correct this clustering. Decreasing the scaler did, however, result in increased
fragmentation. An increase of the neighbourhood connectivity successfully over-
came the fragmentation issue as shown in Figure 1(b).

In contrast, DBSCAN was found to produce well formed higher density clus-
ters with an ε-neighbourhood parameter of ε = 15. The lower density clusters,
however, were found to be highly fragmented with the presence of a significant
number of unclustered points as shown in Figure 2(a). Decreasing the density
with ε = 16 marginally decreased the cluster fragmentation, as seen in Fig-
ure 2(b), though at the expense of the incorrect merging of the two top left
triangular clusters.

4.2 Network Intrusion Data

The KDD Cup-99 data set features 494,020 network connection records derived
from seven weeks of raw TCP logs consisting of both regular network traffic as
well as 24 types of simulated attacks within a military local area network. Of
the dimensions available, 34 continuous valued features were used for clustering
and a single outlier point was removed.

RepStream was tested using a purity horizon of h = 1, 000. The Manhattan
distance function was used to compute the similarity of data points from features
that were normalised on-the-fly. A point pi = {pi,1 . . . pi,D} of D dimensions
was normalised in each dimension d using the formula p′

i,d = pi,dP|P |
j=1 pj,d

where

|P | refers to the number of points in memory at any given time. The nearest
neighbourhood connectivity was set to k = 9 with α = 1.5.
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The purity results in Figure 3 show that RepStream is able to accurately
differentiate between different types of attack connections. The accuracy of Rep-
Stream was also evaluated against published results reported on the same data
set for the HPStream, DenStream and CluStream algorithms. The results of the
comparisons, depicted in Figure 4 and in Figure 5, shows that in most cases
RepStream was able to classify network connections as well as or with higher
accuracy than HPStream, DenStream and CluStream. The data stream sample
times were chosen to match those reported in [1, 2].
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Fig. 4: Purity measures of RepStream, HPStream and CluStream using available pub-
lished results on the KDD Cup 1999 data set with (a) h = 200 and (b) h = 1, 000.
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Fig. 5: Purity measures of RepStream, DenStream and CluStream using available pub-
lished results on the KDD Cup 1999 data set with (a) h = 200 and (b) h = 1, 000.

4.3 Forest Cover Data
The forest cover data set contained 581,012 records consisting of a total of 54
geological and geographical features that describe the environment in which
trees were observed. Records also included the ground truth as to which of seven
different types of canopy were present on the trees. Attributes consisted of a
mixture of continuous and Boolean valued data, the latter taking values from
the set {0, 1}. Dimensions were normalised as described in Section 4.2 and the
Manhattan distance function was used to measure the similarity between points.
Parameters used on this data set were k = 9 and α = 1.5.

Figure 6 shows the purity measured over the data stream with h = 1, 000.
RepStream is seen to classify the canopy types with an accuracy typically ≥ 85%.
The jagged appearance of the purity plots suggest that the algorithm is coping
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Fig. 7: Purity measures of RepStream, HPStream and CluStream using available pub-
lished results on the forest tree cover data set with (a) h = 200 and (b) h = 1, 000.

with a more dynamic data set than compared to the network intrusion experi-
ment in Section 4.2; a premise confirmed through inspection of the data. Rep-
Stream’s purity measurements were evaluated against HPStream and CluStream
using the results published in [2]. Figure 7 depicts the result of this comparison,
showing that the algorithm was able to classify the tree data with consistently
more accuracy than the competing algorithms.

4.4 Scale-Up Experiments
We investigated the execution time of the algorithm with respect to neighbour-
hood connectivity and the length of the data stream. Scale up experiments were
executed on Mac OS 10.4 running on an Intel 2.33GHz Core 2 Duo processor.

A near linear relationship between connectivity and execution time was dis-
covered in the network intrusion results in Figure 8a. The forest data set pro-
duced a similar relationship as shown in Figure 8b. Execution time with respect
to the length of the data stream is shown in Figure 9.

Whereas the tree data set in Figure 9b shows an expected linear relationship
between the number of points processed and the execution time, the network data
set in Figure 9a displays significant flattening out due to efficient processing of
identical points within the stream. Connectivity was set to k = 5 and a density
scaler of α = 1.5 was used to process both data sets.

5 Conclusions
This paper has introduced a graph-based incremental algorithm for clustering
evolving stream data. Experimental results demonstrated that the algorithm
was able to effectively classify both synthetic and real world data sets. The
algorithm was compared against an incremental implementation of DBSCAN
and shown to robustly handle clusters of complex shapes, sizes and densities.
DBSCAN, in contrast, was shown to be hampered by a static density threshold
ill suited towards stream processing. Results on real world data sets showed that
RepStream was able to more accurately classify well known network intrusion
and forest canopy data sets than three of the most popular stream data clustering
algorithms: DenStream, HPStream and CluStream.
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Fig. 8: Execution time of RepStream clustering (a) the network intrusion data and (b)
the forest canopy data as the k-nearest neighbours are increased.
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Fig. 9: Execution time of RepStream clustering the (a) network intrusion data and (b)
the forest canopy data as the stream length is increased.
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