
Incremental Clustering of Dynamic Data

Streams Using Connectivity Based

Representative Points
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Abstract

We present an incremental graph-based clustering algorithm whose design was mo-
tivated by a need to extract and retain meaningful information from data streams
produced by applications such as large scale surveillance, network packet inspection
and financial transaction monitoring. To this end, the method we propose utilises
representative points to both incrementally cluster new data and to selectively re-
tain important cluster information within a knowledge repository. The repository
can then be subsequently used to assist in the processing of new data, the archival of
critical features for off-line analysis, and in the identification of recurrent patterns.
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1 Introduction

Stream data clustering is a challenging area of research that attempts to ex-
tract useful information from continuously arriving data [22,12]. Limitations
imposed by available computational resources typically constrain our ability to
process such data and restrict, if not completely remove, our ability to revisit
previously seen data points. Given these conditions we still desire effective
means by which to identify trends and changes in evolving stream data. Fur-
thermore, we would like to have the ability to access historical data without
requiring any significant storage/processing resources or multiple passes over
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the data, especially since historical data is critical for large scale stream min-
ing applications such as surveillance, network packet classification, financial
databases, e-mail analysis and multimedia. Stream data clustering has been
heavily investigated in the past years and, although the architectural aspects
of processing data streams has received attention [19,20,17,10,56], most effort
concentrated on the mining and clustering aspect of the problem [26]. Several
algorithms have been developed to handle stream data containing clusters
of different shapes, sizes and densities but only a small number can handle
difficult clustering tasks without supervision.

Generally, the algorithms require expert assistance in the form of the number
of partitions expected or the expected density of clusters. Furthermore, none
of these algorithms attempt to build a selective history to track the underlying
changes in the clusters observed and, thus, have the disadvantage that they
are required to re-learn any recurrently occurring patterns.

The aims of our work have been to develop an algorithm that can handle
all types of clusters with minimal expert help and to provide a graph-based
description of changes and patterns observed in the stream in order to enable
a detailed analysis of the knowledge acquired. The contribution of our work
is a highly accurate stream processing algorithm that can handle all types
of numeric data while requiring only limited resources. The novelty of our
work comes in the form of an integrated knowledge repository which is used
in tandem with the stream data clustering algorithm.

In this paper, we present RepStream, a sparse-graph-based stream clustering
approach that employs representative cluster points to incrementally process
incoming data. The graph-based description is used because it allows us to
model the spatio-temporal relationships in a data stream more accurately
than is possible via summary statistics. Each cluster is defined by using two
types of representative points: exemplar points that are used to capture the
stable properties of the cluster and predictor points which are used to capture
the evolving properties of the cluster.

A critical aspect of our research has been to avoid having to “re-discover” pre-
viously learned patterns by maximising the reuse of previously useful cluster
information. For this reason, a repository of knowledge is used to capture the
history of the relevant changes occurring in the clusters over time. The use of
the repository offers two major benefits.

First, the algorithm can handle recurrent changes in the clusters more effec-
tively by storing a concise representation of persistent and consistent cluster
features. These features assist in the classification of new data points belonging
to historical cluster distributions within an evolving data stream. The reten-
tion of such features is important as they permit the algorithm to discard
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older data points in order to adhere to constraints in available memory and
computational resources while continuing to store useful cluster features. It is
posited that this retention enables the algorithm to handle recurrent change
with higher classification accuracy than would be possible if only the most
recent cluster trends were retained.

Second, the repository provides a concise knowledge collection that can be
used to rebuild a cluster’s overall shape and data distribution history. It is
therefore possible to archive core cluster features for possible future off-line
analysis when a recall of historical changes is desired.

The clustering effectiveness of the algorithm has been extensively investigated
and is demonstrated via experimental results obtained clustering both syn-
thetic and dynamic real world benchmark data sets. Furthermore, the cluster-
ing quality of the algorithm is shown to produce substantially better results
when compared with three of the most popular current stream clustering al-
gorithms: DenStream, HPStream and CluStream.

A preliminary version of this paper appears as [43]. In this paper we present
a more detailed explanation of the workings of the algorithm and its relation-
ship to existing works. Furthermore, we offer an extended set of experimental
results and investigate the algorithm’s parameter sensitivity.

2 Related Work

Several important stream clustering algorithms have been introduced in recent
years. One of the first data stream clustering methods to consider the archival
of cluster information was CluStream [4]. The algorithm uses microclusters
to capture and record statistical summary information suitable for off-line
analysis. The amount of information that is archived is controlled by a user
specified maximum number of microclusters with the algorithm attempting to
capture as much detail as memory constraints allow. CluStream is, however,
best suited to situations in which clusters are spherical, reducing the algo-
rithm’s suitability for many real world data sets. CluStream has recently been
enhanced to deal with uncertainty in the data stream, increasing the accuracy
of the algorithm when clustering noisy data sets [7].

HPStream, a modification of CluStream to enable clustering of high-dimensional
data, was proposed in [5]. The algorithm employs a data projection method
to reduce the dimensionality of the data stream to a subset of dimensions
that minimise the radius of cluster groupings. It was demonstrated that by
projecting data onto a smaller set of dimensions both synthetic and real world
data sets could be more accurately processed. As with CluStream, however,
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the underlying assumption remains that clusters in the projected space remain
spherical in nature. How best to classify incoming data using the CluStream
and HPStream frameworks was discussed in [6].

Birch [54] is a well known hierarchical clustering algorithm that incrementally
updates summary cluster information for off-line analysis. Clusters suitable for
classification are then extracted using the summary information via a second
pass over the data. The algorithm was later adapted for online clustering and
classification by combining the secondary off-line phase with the incremental
update component [27].

A k-median approximation algorithm designed for stream clustering was in-
troduced in [48,29] while a k-means approach to cluster parallel data streams
was presented in[15]. Such algorithms, however, inherit the features typical of
medoid based approaches, most notably the requirement that users supply the
number of clusters to be searched for and the assumption that cluster shapes
are likely to be spherical. Their advantage, however, lies in their low compu-
tational complexity and their adaptability to the distributed data clustering
domain; see [13] for an example and the references contained therein.

A statistical approach to distributed data stream clustering based on expecta-
tion maximisation (EM) was recently introduced in [55]. Here, Gaussian mix-
ture models were used to capture the distribution of data arriving at each host
in a peer-to-peer network. The proposed algorithm, CluDistream, employed a
test-and-cluster approach to efficiently cluster points, a strategy which requires
the mixture models to only be updated on a sample of points that probabilis-
tically belong to an existing cluster. Cluster splits and merges in CluDistream
are event driven and managed by a co-ordinator host which receives notifi-
cations of significant changes to the processing hosts mixture models. Such
notifications allow the algorithm to collect events suitable for later analysis
but does not provide the capacity for efficiently coping with recurrent patterns.

The work of [28] introduced DUCstream, a grid-based technique that seeks
dense “units”, or regions, in a multidimensional space. Clusters are discovered
by applying the CLIQUE [8] algorithm to regions that are considered to be
dense. The algorithm adapts to changes in the data stream by disregarding
regions whose density fades over times. This approach, however, relies on users
specifying the granularity of the data processing as the dense unit detection
requires data to be processed in blocks.

A more recent grid-based approach was introduced with the Cell Tree in [49].
Each cell in the Cell Tree stores a statistical summary of a region of the
data space which is recursively partitioned along a single dimension until a
sparsity threshold has been reached. Each cell stores the time-weighted mean
and standard deviation of the data distribution within the cell, enabling the
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partitioning of each region to cease when the data within the partition is
able to be represented. The algorithm is able to adapt to the changing data
distributions by further partitioning regions when their density grows or by
merging adjacent cells as the data they represent decay.

The literature comprises a considerable number of graph-based clustering ap-
proaches [32,36,37,53]. Recent works related to our proposed approach are
referred to here.

A well known algorithm, Chameleon [41] uses the hMeTiS [40] multilevel graph
partitioning algorithm to recursively divide a sparse graph into microclusters.
These clusters are then iteratively merged based on user specified thresholds
for measures of relative interconnectivity and closeness. A similar approach
is used in MOSAIC [21] where representative based clustering such as k-
means [44] is used to first find a large collection of smaller clusters which
can then be selectively merged via a proximity map to form more complex
cluster structures.

More recently, a multi-density clustering technique that extends the DB-
SCAN [24] density-based clustering approach to stream clustering was pro-
posed in [18]. The algorithm, DenStream, extends DBSCAN by adapting the
original density based connectivity search to a microcluster approach. The
microclusters allow DenStream to efficiently summarise the overall shape of
clusters as the data evolves without requiring the complete set of points to be
retained in memory. The final clustering can be obtained for any time step by
applying a variant of the DBSCAN algorithm on the microclusters themselves.

An incremental version of DBSCAN was earlier proposed in [23]. As with
DBSCAN, the algorithm obtains groupings based on the nearest neighbour-
hood connectivity of points within an a priori defined radius known as the
ε-neighbourhood. Clusters are formed by identifying density-reachable chain-
ings between sets of well connected points. Incremental DBSCAN is able to
cope with arbitrary point insertions and deletions, enabling the algorithm to
forget past data. No measure of usefulness of the data is retained, however,
limiting the algorithm to keeping only the most recent data points in memory.
The algorithm is therefore likely to discard possibly reusable cluster informa-
tion without consideration towards its value.

The ordering points to identify the cluster structure (OPTICS) algorithm [9], a
multi-density extension of DBSCAN, identifies clusters by first ordering points
based on their density and connectivity within their ε-neighbourhood. Plot-
ting the ordering of the points against a reachability measure allows cluster
boundaries to then be visually or algorithmically identified by locating regions
of steep change in the reachability plots. OPTICS was recently extended to
enable data stream processing with the introduction of OpticsStream [51].
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Here, orderings of microclusters are used to adapt the clustering to evolving
data distributions and for temporal analysis of the cluster structure. Unfortu-
nately, no unsupervised method for cluster extraction is provided, the method
instead requiring manual inspection of generated two- and three-dimensional
plots.

Nasraoui et al. [47,46] proposed a clustering technique based on an artificial
immune system in which incoming data points are presented to a network of
artificial white blood cells (b-cells) that mimic the adaptive mutation observed
in biological immune systems. The algorithm classifies incoming data points
based on the similarity of each point to existing b-cells and each cell’s radius
of influence. Cells rapidly evolve with the data stream via an update method
that simulates cell stimulation. New b-cells are created whenever no existing
b-cell is stimulated by a new data point; the network of b-cells is periodically
reduced by means of k-means clustering.

Two alternative measures to the often used minimum cut metric, graph ex-
pansion and conductance formed the basis for a graph partitioning scheme
in [38,39]. Here graph expansion incorporates the relative size of sub-graphs
into the cut measure. Conductance, in contrast, gauges the importance of
vertices by assigning them weightings based on their similarity to neighbour-
ing vertices. Clustering attempts to find groupings that result in a minimum
threshold for expansion or conductance while simultaneously reducing the sum
of the intercluster edge weights in the clustering system. This approach was
expanded in [25] with a technique that combines the bicriteria used in [38,39]
into a single parameter that bounds both the minimum graph expansion and
the maximum intercluster edge weight.

Another technique that has been explored is the analysis of a stochastic process
performing a random walk through a weighted graph in order to probabilisti-
cally isolate clusters. One such method is the algorithm in [31] which determin-
istically analyses a similarity matrix to locate separations between vertices on
a weighted graph. The Markov clustering (MCL) algorithm described in [52]
similarly discovers cluster formations by updating a state transition matrix
to simulate random walks. The first random walk method to be proposed, in
contrast, required significant space and computational resources to generate
actual walks [30].

None of the algorithms mentioned provide a means to selectively archive his-
torical information. Those algorithms that facilitate archiving instead tend to
approach the issue by storing summary statistics with which general changes
in clusters can be revisited.
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3 Preliminaries

Given a data stream P of time ordered points P = {p1, . . . p|P |}, we wish
to find groupings of points sharing similar properties. We define a cluster
c to be a set of points c = {p1 . . . p|c|} where each point pi is a multidimen-
sional vector pi = {pi,1 . . . pi,D} of D dimensions. Let C be the set of clusters
C = {c1 . . . c|C|}.

Let the set G = {g1 . . . g|P |} consist of the ideal cluster assignments for points
P such that the jth element gj correctly labels point pj. We aim to assign labels
to data points such that each point is correctly classified or any misclassifi-
cation is minimised. For example, if correct classification of a domesticated
cat (Felis sylvestris) in a stream of observed animal is not achieved then we
would prefer a misclassification such as sand cat (Felis margarita) over leopard
(Prionailurus bengalensis), a member of a different genus. The distance be-
tween point pi and point pj is given as D (pi, pj) and is typically the Euclidean
or Manhattan distance between two points, although other domain specific
functions may be desirable [35,1,2].

Points are inserted into a directed k-nearest neighbour (k-NN) sparse graph
SG (V,E) of vertices V = {v1, . . . v|V |} and edges E = {e1, . . . e|E|} such that
the ith vertex vi corresponds to point pi ∈ P . Each edge is an ordered pair
〈v, u〉 of vertices such that v, u ∈ V that represents the distance to a near-
est neighbour in the selected dimensions. The sparse graph representation is
used as it provides a rich representation of relationships that is otherwise not
available by only labelling data points. For example, a surveillance application
benefits from knowing the spatio-temporal relationships in a suspect’s position
over time as opposed to only labels and positions of locations.

Definition 1 (nearest neighbour) Let NN(vi) be the set nearest neighbours of
a vertex vi such that

∀vx ∈ V and ∀vj ∈ NN(vi),D(vi, vj) ≤ D(vi, vx) vx 6= vj. (1)

Let NN (vi, j) be a function that gives the jth nearest neighbour of vi.

Definition 2 (incoming edges) Given an ordered pair 〈vj, vi〉 let IE(vi) be the
set of incoming edges directed at vertex vi such that

∀j,∃ 〈vj, vi〉 ∈ IE(vi) and ∃ 〈vj, vi〉 ∈ E. (2)

Let |IE(vi)| be the number of incoming edges of vi.

Definition 3 (outgoing edges) Given an ordered pair 〈vi, vj〉 let OE(vi) be the
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set of outgoing edges from vertex vi such that

∀j,∃ 〈vi, vj〉 ∈ OE(vi) and ∃ 〈vi, vj〉 ∈ E. (3)

Definition 4 (reciprocally connected) Let RC(vi) be the set of vertices that
are reciprocally connected to a vertex vi such that

∀vx ∈ RC(vi),∃ 〈vi, vx〉 ∈ E and ∃ 〈vx, vi〉 ∈ E. (4)

Figure 2 shows the nearest neighbours and the incoming edges of two sampled
vertices from the sparse graph in Figure 1. Reciprocally connected vertices
along with outgoing edges of a sample vertex are demonstrated in Figure 3.

Let R = {r1, . . . r|R|} be a set of representative vertices on SG such that
∀x, rx ∈ V and let RSG (W,F ) be a directed k-nearest neighbour repre-
sentative sparse graph which links the vertices W = {w1, . . . w|W |} via edges
F = {f1, . . . f|F |}. An edge in F is an ordered pair 〈v, u〉 of vertices such that
v, u ∈ R. Let NNR(ri), NNR (ri, j) and RCR(ri) be functions that provide the
nearest neighbours, the nearest jth neighbour and the set of vertices that are
reciprocally linked to a representative vertex ri on RSG.

Figure 4 depicts the representative sparse graph RSG formed from the sparse
graph SG in Figure 1.

Definition 5 (predictor) Let a representative ri be a predictor if ri satisfies
the condition that |IE(ri)| <

k
2
.

Definition 6 (exemplar) Let a representative ri be an exemplar if ri satisfies
the condition that |IE(ri)| ≥

k
2
.

Definition 7 (representative vertex) Representative vertices represent at most
k non-representative vertices on the sparse graph SG. A vertex vi is made
representative if at any time @j, vj ∈ RC(vi), vj ∈ R, that is, if it is not re-
ciprocally connected to an existing representative. Representatives are further
categorised into a set of exemplar representatives RE = {rE

1 , . . . rP
|RE |} and

predictor representatives RP = {rP
1 , . . . rP

|RP |} such that RP ∪ RE = R and

RP ∩RE = ∅.

Clustering decisions in RepStream are made via vertices representative of re-
gions within the cluster space. Representative vertex labels are included purely
to aid in their interpretation and do not affect the operation of the algorithm.
Exemplars are said to represent cluster regions for which we have evidence
of both consistency and persistence. Predictors, in contrast, represent regions
which possess a potential to become prominent cluster features but where such
evidence has not yet been seen.
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Fig. 1. An example sparse graph SG showing a set of vertices and their directed
edges for k = 3. Cluster c3 was formed from a set of identical vertices.

Fig. 2. The nearest neighbours of vertex v11 and the incoming edges of vertex v27

in cluster c1 on sparse graph SG for k = 3.

Fig. 3. The vertices reciprocally connected to vertex v27 and the outgoing edges of
vertex v21 in cluster c1 on sparse graph SG for k = 3.
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Fig. 4. The representative vertices on sparse graph RSG. The identical vertices
(v34 . . . v37) shown in Figure 1 have created a singularity.

Fig. 5. The relative density of the representative vertices belonging to cluster c1 when
α = 2. Reciprocal connections between density-related vertices are highlighted.

Connectivity between representative vertices is further governed by a measure
of the relative density of the regions that they represent.

Definition 8 (relative density) The density of representative vertex ri ∈ R

on the sparse graph SG is defined by the function RD (ri):

RD (ri) =
1

|NN (ri)|

|NN(ri)|
∑

j=1

D (ri,NN (ri, j)) . (5)
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Definition 9 (density-related) Given a density scaler α, two representatives
ri and rj are density-related if the following conditions are true:

rj ∈ RCR (ri) (6)

D (ri, rj) ≤ RD (ri) · α (7)

D (ri, rj) ≤ RD (rj) · α. (8)

Definition 10 (singularity) A representative vertex ri ∈ R is termed a sin-
gularity when its localised density RD(ri) has reached zero and the following
conditions are met:

k
∑

j=1

D (ri,NN (ri, j)) = 0 (9)

|NN (ri)| = k. (10)

An example of a singularity is shown as part of the representative sparse graph
in Figure 4. The relative densities of the representative vertices in cluster c1

and the density-relation of the representatives are depicted in Figure 5.

4 Clustering Stream Data via Representative Points

Our cluster representation involves the use of dynamically updated sparse
graphs that, when used in conjunction with a repository of representative ver-
tices, allows us to rebuild a cluster’s history and to rapidly adapt to significant
patterns previously observed. The RepStream algorithm that we propose aims
to capture such patterns in order to recall them at some future time should
the change reoccur. RepStream is a single phase incremental algorithm that
updates two sparse graphs of k-nearest neighbour connected vertices in order
to identify clusters among data points. The first of these graphs is used to
capture the connectivity relationships amongst the most recently seen data
points and to select a set of representative vertices. The second graph is used
to track the connectivity between the chosen representative vertices. The con-
nectivity of the representative vertices on both graphs then forms the basis
for the algorithm’s clustering decision making. An overview of the relationship
between the two sparse graphs is provided in Figure 6.

4.1 Algorithm Overview

At each time step a new single point pi is observed in the data stream and
added to the sparse graph SG(V,E) as vertex vi. A new vertex joins an existing
cluster if it is reciprocally connected to a representative vertex vj ∈ R. Should
no such representative vertex exist then vi is itself promoted as an exemplar or
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Fig. 6. The relationship between the sparse graph and the representative sparse
graph. Representative vertices are labelled “R” while non-representative vertices
are unlabelled.

predictor vertex and used to form a new cluster. The creation of the new cluster
may trigger an immediate merge with an existing cluster if the conditions for
merging are met.

Representative vertices are used to make clustering decisions at a higher level.
This offers two major advantages. First, since representative vertices typify a
set of nearby data points, decisions made at this level improve performance
by requiring only a subset of the data to be considered. Second, representative
vertices are associated with a measure of usefulness which allows the algorithm
to selectively retain highly valued representatives as historical descriptors of
the cluster structures. This retention allows the algorithm to accurately clas-
sify new data points arriving within a region of the clustering space where the
non-representative vertices have since been retired.

Cluster merges and splits are conditional on the connectivity of representa-
tive vertices on the higher level representative sparse graph along with the
density of vertices on the sparse graph SG in local proximity to their repre-
sentative vertices. Since these decisions are made at the representative vertex
level, larger clusters are formed when two or more representative vertices are
seen to be density-related. Merges can, therefore, be made immediately when
an update to the connectivity of vertices on the representative sparse graph
sees the creation of a new reciprocal connection between two representative
vertices where the localised density of representative vertices suggests that
they are of similar density and are in close proximity. Merges may also be
triggered when the addition of a new, or the removal of an existing, vertex
affects the density of existing representative vertices. Two existing representa-
tive vertices that are reciprocally connected but not density-related can merge
if the density of one or both representative vertices reduces over time to al-
low such a connection to be made. Cluster splits are similarly detected by
performing a split test whenever existing density-related connections between
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two representative vertices are lost. Monitoring the connectivity and relative
density of representatives enables the algorithm to evolve with changes in the
data.

A significant aim of RepStream is to retain those representative vertices that
prove, over time, to be useful in representing the shapes and distributions of
clusters. Such vertices are retained for as long as possible (subject to available
resources) via a repository. Retaining the most useful representative vertices
permits the algorithm to “remember” previously encountered cluster distri-
butions in order to rapidly adapt to recurrent patterns. Those vertices that
are no longer useful are archived for possible off-line analysis if constraints
prevent the algorithm from retaining them.

Processing and memory constraints require that the algorithm discard infor-
mation over time. This is accomplished by prioritising the disposal of data
such that the least useful information for clustering is removed first. Non-
representive vertices are queued on a first in, first out basis and removed
whenever resource limitations are reached. Representative vertices that are
not stored in the repository are considered to have little retentive value and
are also removed via the deletion queue. All other representative vertices re-
main in memory; their deletion is instead managed via the repository update
procedure detailed in Section 4.6.

The removal of a vertex requires updates to the sparse graph and the repre-
sentative sparse graph. Graph updates are made to ensure that any vertices
with edges directed at the removed vertex are updated with a new nearest
neighbour. Representative vertices are also updated to ensure that their local
density is adequately maintained.

4.2 Sparse Graph SG Updates

Insertion of a new vertex vi into the sparse graphs is a multistep process that
initially links each new vertex into sparse graph SG prior to updating any
vertices that have been affected by the insertion. Line numbers referenced
here refer to Algorithm 1 which provides an outline of the steps involved.
First, a directed edge is created from vi to each of its nearest neighbours
(line 7). A neighbour vj is updated to link back to vi if the distance from
vj to the furthest neighbour of vj is greater than the distance from vj to vi

(lines 8–9). The creation of a directed edge from vj to vi signals the creation
of a reciprocal connection between the two vertices and causes vertex vj to
be queued for further processing as a vertex that has gained a reciprocal link
(line 10). If the addition of a directed edge from vj to vi results in vertex
vj possessing more than k neighbours then the outgoing edge from vj to its
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Algorithm 1: linkIntoGraphSG(vi, neighbours)

createdRecipV ertices← ∅;1

removedRecipV ertices← ∅;2

removedRecipRepresentatives← ∅;3

removedNeighbours← ∅;4

deletedV ertex← ∅;5

foreach vj ∈ NN (vi) do6

createLink(vi, vj , SG);7

if |NN (vj)| < k or D (vi,NN (vj , |NN (vj)|)) ≤ D (vj ,NN (vj , |NN (vj)|)) then8

createLink(vj , vi, SG);9

createdRecipV ertices += vj ;10

if |NN (vj)| > k then11

remove furthest nearest neighbour of vj ;12

removedNeighbours += vj ;13

if removal of furthest neighbour of vj removes a reciprocal link then14

removedRecipV ertices += vj ;15

foreach vj ∈ createdRecipV ertices do16

if vj ∈ R then17

update local density of vj ;18

deletedV ertex = updateRepository(vj , reinforceCount (vj) + 1);19

if deletedV ertex then20

remove deletedV ertex from createdRecipV ertices, removedRecipV ertices,21

removedRecipRepresentatives and removedNeighbours;
unlinkVertex(deletedV ertex);22

connectivityChanged = updateRepresentativeStatus(vj);23

if connectivityChanged then removedRecipRepresentatives += vj ;24

if vi not reciprocally-connected to a representative then makeRepresentative(vi);25

else assign vi to cluster of closest representative;26

foreach vj ∈ removedRecipRepresentatives do27

if vj ∈ R then28

update local density of vj ;29

connectivityChanged = updateRepresentativeStatus(vj);30

if connectivityChanged then removedRecipV ertices += vj ;31

foreach vj ∈ removedNeighbours do32

foreach vx ∈ NN (vj) do33

if vx not connected to a representative then makeRepresentative(vx);34

furthest neighbour is removed and vj is added to a queue of vertices that
have lost a nearest neighbour (lines 11–13). This ensures that the k-nearest
neighbour property of the sparse graph is maintained. Further, if the removal
of the furthest neighbour of vj results in the removal of a reciprocal link then
vj is appended to a queue of vertices that have lost a reciprocal link to a
neighbouring vertex (lines 14–15).

The vertices that have gained a reciprocal connection to the new vertex vi are
now revisited (line 16). First, the local density of each representative vertex
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reciprocally connected to vi is updated (line 18). The reinforcement count of
reciprocally linked representative vertices is also incremented via the repos-
itory update method described in Section 4.6 (line 19). Repository updates
may trigger the removal of less useful representative vertices if resource con-
straints limit the size of the repository (line 20). Such vertices are immediately
unlinked from both sparse graph SG and sparse graph RSG, and archived to
disk for possible future off-line analysis (line 22). Updates to a representative
vertex’s local density may cause the removal of a density-related link between
two vertices (line 23). If so, the affected vertex is added to a queue of vertices
that have lost a reciprocal link to another vertex (line 24) so that cluster split
checks may be made. A decision is then made as to whether the new vertex
vi will be promoted to a representative vertex is made. Immediate promotion
of a new vertex occurs, if no reciprocal link was established between it and
an existing representative vertex, otherwise the new vertex is assigned to the
cluster of its nearest representative (lines 25–26).

Non-representative vertices that have lost a reciprocal link are revisited to
identify representative vertices that require updates to their local density
(lines 27–30). Should such an update trigger the removal of a density-related
link then that representative vertex is added to the queue of representatives
requiring a cluster split check (line 31). Any non-representative vertices that
have lost a nearest neighbour are checked to ensure that its neighbours con-
tinue to be reciprocally linked to at least a single representative vertex. Any
neighbour that is not reciprocally linked to a representative vertex also be-
comes a representative vertex (lines 32–34). This ensures that each data point
is linked to, or acts as, a representative.

4.3 Sparse Graph RSG Updates

Inserting a new representative vertex into sparse graph RSG involves a process
similar to vertex insertions on sparse graph SG. Line numbers here refer to
Algorithm 2 which details the steps involved.

As with sparse graph SG, each new representative vertex ri is first linked
to its nearest neighbours on RSG (line 5). A reciprocal link from a nearest
neighbour rj is then made to ri if the distance from rj to ri is less than or
equal to the distance of the furthest nearest neighbour of rj (lines 6–7). The
k-nearest neighbourhood property of rj is then maintained (lines 8–10) which
may trigger the removal of a reciprocal link (lines 11–12).

The representative vertices are now used to detect cluster merges, the trigger
condition being the creation of a density-related link between vi and a repre-
sentative vertex that has been assigned to another cluster (line 13). Finally,
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Algorithm 2: linkIntoGraphRSG(ri, neighbours)

createdRecipV ertices← ∅;1

removedRecipRepresentatives← ∅;2

removedNeighbours← ∅;3

foreach rj ∈ NNR (vi) do4

createLink(ri, rj , RSG);5

if |NNR (rj)| < k or D (ri,NNR (rj , |NNR (rj)|)) ≤ D (rj ,NNR (rj , |NNR (rj)|))6

then

createLink(rj , ri, RSG);7

createdRecipV ertices += rj ;8

if |NNR (rj)| > k then9

remove furthest nearest neighbour of rj ;10

if removal of furthest neighbour of rj removes a reciprocal link then11

removedRecipRepresentatives += rj ;12

if cluster of ri 6= cluster of rj then merge clusters of ri and rj ;13

foreach vertex rj ∈ removedRecipRepresentatives do splitCheck(rj);14

split checks are performed on those representative vertices that have lost a
reciprocal link to another vertex on RSG (line 14).

In terms of complexity, in order for a new representative ri to be inserted
into the sparse graph RSG, it is required that the representative’s nearest
k-nearest neighbours be initially identified which involves a O(k log |R|) op-
eration when employing the KD-Tree. Creating an edge from ri to a single
neighbour is accomplished in constant time. Maintaining the ordering of a the
nearest neighbours of ri, however, requires an additional O(log k) operation.
Next, the algorithm checks the distance of ri to each of its neighbours to
test whether the neighbouring representatives need to update their own near-
est neighbourhood. This requires distance calculations of complexity O(d) for
each of its neighbours. If each of the nearest neighbours of ri becomes re-
ciprocally linked to ri then this introduces additional O(log k) processing to
establish an reciprocal link from a neighbour rj back to ri. The removal of the
furthest nearest neighbour of rj is tracked in constant time.

The worst case complexity of updating the links between ri and all of its k

neighbours is therefore

O(k log |R|) +O(2k log k) +O(kd) . (11)

An example of the sparse graph updates made due to the arrival of a new
vertex is shown in Figure 7. Here the existing sparse graph in Figure 7a is
updated with a new vertex with the updated edges shown in Figure 7b. The
new vertex is not reciprocally linked to an existing representative vertex and,
as such, is promoted as a new representative as seen in Figure 7c.
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(a) (b)

(c)

Fig. 7. Incremental sparse graph update: the connectivity of vertices in the cluster
in (a) is updated with the arrival of a new vertex “N” in (b). The new vertex is
not reciprocally connected to any representative vertex “R” and is therefore made
representative in (c).

RepStream performs periodic vertex removals. This process requires updates
being made to each vertex connected to the vertex vi being removed. A total of
k outgoing edges and |IE(vi)| incoming edges (Definition 2) are removed from
the sparse graph SG. Further, if the vertex being unlinked is a representative
then a further k outgoing links and |IER(vi)| incoming edges will be removed
from the sparse graph RSG. The complexity of these edge removals is O(2k)
+ O(|IE(vi)|) + O(|IER(vi)|).

Each vertex that was connected to the deleted vertex must be revisited to
maintain its nearest neighbourhood. Each revisited vertex requires aO(k log |V |)
search to be performed for each of its k nearest neighbours. The complex-
ity of maintaining the nearest neighbours of each neighbour of vi is hence
O(k2 log |V |). Maintaining the nearest neighbour of the affected representa-
tives on RSG is similarly O(k2 log r). The worst case complexity of removing
a single vertex from both sparse graphs is therefore

O(2k) +O
(

k2 log |V |
)

+O
(

k2 log |R|
)

. (12)

The initial process of linking a vertex vi into sparse graph SG in Algorithm 1 is
similar to that of Algorithm 2. The complexity of updating the links between
vi and all of its k neighbours is therefore similar to that of Equation 11:

O(k log |V |) +O(2k log k) +O(kd) . (13)
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The complexity of the remaining operations is dependant on whether a re-
ciprocal link has been established to a representative vertex. If not then the
new vertex is made into a representative, the complexity of which is given as
Equation 16.

If, however, a reciprocal link to a representative is established then processing
continues as follows. First, updating the local density of each representative is
done in constant time since summary information can be maintained. Repos-
itory updates are then made, the complexity of which will be shown in Sec-
tion 4.4 to be O(3 log |S|). The cost of unlinking a vertex was previously given
as Equation 12. Checking the link status of the representative vertices costs
O(2kd) time. The worst case sparse graph SG insertion occurs when each k

neighbour of a newly inserted vertex is found to be reciprocally connected to
a neighbour. In this case an additional complexity is incurred:

O(3k log |S|) +O
(

2k2
)

+O
(

k3 log |V |
)

+O
(

k3 log |R|
)

+O
(

2k2d
)

.(14)

The complexity of creating a representative vertex will be shown in Section 4.4
to be O(k log |R|)+O(2k log k)+O(3kd) (Equation 16). Creating a represen-
tative vertex out of each neighbour of the neighbouring vertices of vi therefore
requires

O
(

k2 log |R|
)

+O
(

2k2 log k
)

+O
(

3k2d
)

+O

(

k2 |V |

2

)

+O
(

k2|R|2
)

. (15)

Our implementation of RepStream employs a KD-Tree to perform nearest
neighbour searches. Although identifying k neighbours incurs, on a naive KD-
Tree implementation O(k log k), this structure does introduce some additional
overhead in order to maintain a balanced structure. Cost of rebuild is approxi-
mately O

(

|V | log2 |V |
)

on the sparse graph SG, a cost which is amortised over
time by only periodically rebuilding the tree.

4.4 Representative Vertex Creation and Promotion

A vertex vi becomes a representative vertex if at any time it is not reciprocally
linked to an existing representative vertex. Algorithm 3 outlines the steps
taken to promote a vertex to a representative. A new representative vertex is
classified as a predictor if its number of incoming edges is beneath a threshold
that we define to be half of a vertex’s maximum outgoing edge count as given
by the user supplied value of k (lines 2–7). A representative vertex is therefore
a predictor if |IER (ri)| <

k
2

else it is labelled an exemplar.
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Algorithm 3: makeRepresentative(vi)

R = R ∪ vi;1

if |IER (vi)| ≥
k
2 then2

mark vi as an exemplar;3

RE = RE ∪ vi;4

else5

mark vi as a predictor;6

RP = RP ∪ vi;7

if vi not assigned to a cluster then8

create a new cluster cnew;9

assign vi to cnew;10

linkIntoGraphRSG(vi, NNR (vi));11

foreach ep ∈ OE (vi) do12

if term(ep) /∈ R and D(vi, term (ep)) < D (vi, closest representative of ep) then13

set vi as closest representative of term(ep);14

relabel term(ep) and move into assigned cluster of vi;15

The initial steps in the creation of a new representative ri in Algorithm 3
require constant time operations. Testing whether the nearest representative
of a single neighbour of ri has changed requires two O(d) distance calculations.
The worst case complexity of creating a new representative is therefore

O(k log |R|) +O(2k log k) +O(3kd) . (16)

A vertex that is becoming representative will not have been assigned to a
cluster if it is still in the process of being inserted into the sparse graph at
the time of its promotion. In this case, a new cluster is created such that
the new representative vertex is the cluster’s sole member (lines 8–10). This
approach permits the formation of new clusters when the arrival of a new data
point falls outside the region of an existing cluster. The new representative
vertex is then inserted into the representative sparse graph using the described
graph insertion method, possibly triggering a merge between its cluster and an
existing cluster (line 11). Figure 8 demonstrates the formation of a new cluster

(a) (b)

Fig. 8. Formation of a new cluster: the representative sparse graph in (a) is updated
with a new representative vertex in (b). The new representative “NR” forms a new
cluster due to a lack of reciprocal links with a representative of the existing cluster.
The dotted line marks the cluster separation.
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Algorithm 4: updateRepresentativeStatus(ri)

if ri ∈ RP
and |IER (ri)| ≥

k
2 then1

upgrade ri to an exemplar;2

statusChanged← false;3

foreach ep ∈ OER (ri) do4

if ep is density-related then5

if D (ri, term (ep)) > RD (ri) · α or D (ri, term (ep)) > RD (term (ep)) · α then6

mark ep as reciprocal;7

statusChanged← true;8

else if ep is reciprocal then9

if D (ri, term (ep)) ≤ RD (ri) · α and D (ri, term (ep)) ≤ RD (term (ep)) · α10

then

mark ep as density-related;11

statusChanged = true;12

return statusChanged13

due to the creation of a new representative vertex that is not reciprocally
connected to the existing cluster.

The cluster membership of the nearest neighbours of vi on sparse graph SG
are checked following the insertion of the new representative vertex into the
representative sparse graph. A nearest neighbour is relabelled if the new rep-
resentative vertex is its nearest representative and the cluster membership of
the two vertices differ (lines 12–15).

The density of representative vertices is affected over time by changes in the
distribution of vertices on sparse graph SG. Reciprocal links between vertices
on the representative sparse graph may, therefore, need to be reclassified as
being either simple reciprocal or density-related links. This is a necessary step
that enables the algorithm to evolve as the density and distribution of the
data changes. Algorithm 4 details the steps involved.

Limitations in available memory requires the algorithm to discard old informa-
tion. A vertex vi that is to be retired must first be unlinked from its respective
graphs in order to maintain nearest neighbourhood connectivity. This requires
that each neighbouring vertex of vi be visited and its nearest neighbours up-
dated.

In terms of complexity, the first steps, testing a predictor representative and
possibly promoting it to an exemplar, are achieved in constant time. Check-
ing whether a density-related relationship has been lost requires two O(d)
distance calculations. Two O(d) calculations are also required to test a link
to a non-density-related neighbour. The worst case complexity of checking a
representative’s status is therefore O(2kd), regardless of their density-related
status.
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4.5 Merging and Splitting Clusters

Cluster split and merge decisions are made by monitoring both the reciprocal
connectivity of vertices on the representative sparse graph as well as their
relative density based on the proximity of their nearest neighbours on sparse
graph SG. The trigger condition for either of these events is the creation or
removal of density-related links.

Cluster merges are triggered when updates to the representative sparse graph
creates a density-related link between representative vertices that have been
assigned to different clusters. Merging is a simple process that sees the vertices
from the smaller of the two merging clusters moved over to the larger cluster
structure. Neither the sparse graph nor the representative sparse graph require
any further updating.

Cluster reassignment during a cluster merge is carried out on the smaller of
any two clusters being merged. The worst case scenario results in a O

(

|V |
2

)

cluster merge each time a density-related reciprocal link is established on RSG.

An example of a cluster merge, due to the creation of a new representative
that has created a density-related link between two closely positioned clusters,
is given in Figure 9.

Split checks are executed when the loss of a density-related link between two
vertices on the representative sparse graph is detected. Figure 10 provides an
example of a cluster split due to a change in the density-related connections
of representative vertices. The change here is caused by the addition of a new
representative whose inclusion has removed a reciprocal connection between
two representative vertices. An example of a cluster split due to a change
in the density of a representative vertex is shown in Figure 11. A standard
O(n2) region growing algorithm that follows the density-related links of the
representative vertices was employed to perform split checks.

Split tests execute with complexity O(|R|2) given that a simple region growing

(a) (b)

Fig. 9. Cluster merge: the representative sparse graph in (a) is updated with a new
representative that causes the two clusters to merge (b). The dotted line marks the
cluster separation; areas of influence of each representative vertex’s localised density
are not shown.
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(a) (b)

Fig. 10. Cluster split: the representative sparse graph in (a) is updated with a
new representative that causes a split in (b). The dotted line marks the cluster
separation; areas of influence representative of each representative vertex’s localised
density are not shown.

(a) (b)

Fig. 11. Changing density: two representative vertices density-related in (a) split into
two separate clusters over time as the density of the second representative increases
in (b). Although the representatives remain reciprocally linked, the shaded area of
influence centred around the second representative has shrunk. Edges are depicted
for both the sparse graph SG and the representative sparse graph. The dotted line
marks the cluster separation.

algorithm is used in our implementation.

4.6 Repository Management

Central to the operation of RepStream is a repository of the most useful
representative vertices used for clustering.

Definition 11 (representative usefulness) The usefulness of a representative
vertex ri is defined by the decay function:

usefulness (ri, count) = log (λ) · (current time− creationTime (ri) + 1)

+ log (count + 1) (17)

where λ is a user specified decay rate and count is the representative vertex’s
reinforcement count.
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The repository is defined as an ordered vector of vertices S =
〈

s1, . . . s|S|
〉

sorted in ascending usefulness. The decay function ensures a monotonic or-
dering of vertices in the repository with respect to the passing of time. In our
implementation of RepStream we chose to index the repository using an AVL
binary search tree [42]. Algorithm 5 outlines the repository update process.
Updating the reinforcement count of a representative vertex that has already
been added to the repository requires only two tree operations: the removal
of the vertex and then its subsequent reinsertion following an increment to its
reinforcement count (lines 2–4). The least useful representative vertex can be
rapidly found by traversing to the AVL tree node with the lowest usefulness
score.

Approximately 50% of the memory allocated to the algorithm is reserved
for maintaining the representative vertex repository. This value was chosen
to balance the algorithm’s ability to retain historical information with its
capacity to discover slow forming clusters. Such clusters may not be evident
if only the short term behaviour of the data stream were to be analysed.

New additions to the repository are made whenever a new representative ver-
tex is created until resource constraints have been reached (lines 6–7). At this
point only the most useful repository members are retained. This is achieved
by comparing the least useful repository member with other non-repository
representatives whenever their reinforcement count is incremented (lines 9–
13).

The process of updating an existing repository member’s reinforcement count
outlined in Algorithm 5 requires a single removal and a single insertion opera-
tion, each of which can be performed in O(log |S|) time using an AVL tree [42].

Algorithm 5: updateRepository (vi, newRCount)

deletedV ertex← ∅;1

if ri ∈ S then2

remove ri from S;3

insert ri into S with newRCount;4

else5

if |S| < maxRepositorySize then6

insert ri into S with newRCount;7

else8

rw ← first(S);9

if usefulness (rw, newRCount) ≤ usefulness (ri, newRCount) then10

remove rw from S;11

insert ri into S with newRCount;12

deletedV ertex← rw;13

set reinforcement count of ri to newRCount;14

return deletedV ertex15
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If a new member is being inserted into the repository and an old entry is re-
moved then an additional O(log |S|) search operation is required to identify
the least useful member. The worst case complexity of a repository update is
therefore O(3 log |S|).

An example of how the repository retains the shape of a cluster in the presence
of recurrent change is demonstrated in Figure 12.

(a) (b) (c) (d)

Fig. 12. Recurrent change: the initial cluster with representatives “R” is shown in
(a). Change is evident in the cluster as new vertices arrive and old vertices are
removed in (b). This change results in the creation of a new representative vertex
(shown shaded). The recurrent pattern in (c) reinforces the existing representatives;
the newly formed representative is retained. The new representative vertex is then
reinforced with the recurrent change in (d). For clarity, edges between non-repre-
sentatives are not shown.

4.7 Singularities

A representative vertex ri that is k-connected to its nearest neighbours and
where

∑k
j=1 D(ri, NN(ri, j)) = 0 represents a collection of identical points that

offer no new information to the clustering process, yet whose inclusion in the
sparse graphs would require the retirement of otherwise useful vertices. For
example, a stationary object in a GPS data stream is likely to introduce a
large number of identical points that are well suited for representation by a
single representative vertex.

Such vertices are referred to as singularities and occur when identically fea-
tured points are frequently observed in a data stream. New points that are
identical to a singularity can therefore be immediately deleted in order to
avoid the overhead of unnecessary sparse graph updates and to maintain the
information value of the repository. The occurrence of such points is not lost,
however, and is instead represented through the singularity’s reinforcement
count.

Singularities are unable to be assigned non-zero density measures and as such
do not lose their singularity status once it is acquired. This ensures that the
presence of a singularity is permanently captured by the algorithm even though
its nearest neighbours may be retired over time. Representative vertices are
unable to form density-related links to singularity vertices.
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5 Experimental Results

The performance of RepStream 1 was evaluated using both synthetic and real
world data sets. Our real world data sets consisted of the KDD-99 Cup net-
work intrusion data 2 and the forest canopy type data 3 first described in [16].
Although the latter data set cannot be regarded as true stream data, we make
the assumption that the ordering of the data can be used as a substitute for
time. The forest data set was previously treated as stream data in [5].

Both cluster purity [3] and cluster entropy [33] were used to measure the
classification accuracy of the algorithm.

Cluster purity provides a measure of how well data is being classified in the
short term over a horizon of the previous h data points. The cluster purity
CP(ci) of a cluster ci is defined as

CP (ci) =
1

|ci|
max

k





|ci|
∑

j=1

r (vj, k)





where r (vj, k) is the counting function:

r (vj, k) =







1, if class (vj) = k

0, otherwise.

The total clustering purity TCP(C) is then found by averaging over all clus-
ters:

TCP (C) =
1

|C|

|C|
∑

i=1

CP (ci) . (18)

As well as measuring the purity of the clustering, cluster entropy was employed
as an indicator of the homogeneity of the entire cluster system. The entropy
of a cluster ci is defined as

H (ci) =
classes in ci
∑

k=1

|q (ci, k)× log (q (ci, k))| (19)

1 Available from http://impca.cs.curtin.edu.au/downloads/software.php
2 Available [11] from http://kdd.ics.uci.edu/databases/kddcup99/
3 Available [34] from ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/covtype/
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given the counting function

q (ci, k) =

|ci|
∑

j=1

r (vj, k)

|ci|
. (20)

The total cluster entropy can thus be found via

TH (C) =
|C|
∑

i=1

|ci|
∑|C|

j=1 (|cj|)
× H (ci) . (21)

Unless noted otherwise, the algorithm was constrained to using only 10 MiB
of memory and the decay factor used in all experiments was set to λ = 0.99.
The ordering of the data sets was invariant throughout the experimentation.
The KD-Tree [14,45] was used to perform nearest neighbour searches in our
implementation.

5.1 Synthetic Data

The clustering quality of RepStream was first examined using two hand crafted
synthetic data sets. The quality of RepStream was compared against an in-
cremental version of DBSCAN [23]. DBSCAN was selected for comparison as
it employs a density based method of clustering known to perform well with
arbitrarily shaped clusters. The algorithm is, however, limited to operating
at a single density and is therefore expected to exhibit difficulties when deal-
ing with the synthetic data sets. As DBSCAN relies on a priori knowledge of
the optimal cluster density, we repeated each of the DBSCAN experiments
using a variety of values for the ε-neighbourhood. The minimum number of
points required to form a cluster was set to 5. The experiment was designed to
demonstrate that RepStream is capable of clustering a difficult set containing
a variety of arbitrarily shaped clusters of different densities without requiring
specialised expert assistance to select the algorithm parameters.

The two data sets used, DS1 and DS2, are presented in Figure 13. Both data
sets were presented to the two algorithms using a randomised point ordering
that did not change during experimentation. The similarity between points
was computed using the Manhattan distance. DS1 was made up of 9,153 data
points while DS2 consisted of 5,458 points.

Figure 14a depicts the RepStream clustering of DS1 using the optimal pa-
rameter set k = 4 and α = 4.0. These results show that the algorithm was
able to cluster the arbitrarily shaped clusters well. The discovered clusters are
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(a) (b)

Fig. 13. Synthetic datasets (a) DS1 and (b) DS2.

(a) (b)

Fig. 14. RepStream clustering of DS1 highlighting the performance difference be-
tween a neighbourhood connectivity of (a) k = 4 and (b) k = 5 when α = 4.0.
The higher connectivity in (b) resulted in the removal of the fragmentation of the
middle triangle at the cost of an incorrect merger between the two upper left corner
triangles.

sub-optimal, however, with some minor fragmentation of clusters evident. The
most notable of these is seen in the middle triangle at the top of the cluster
set, a close up of which is shown in Figure 15. The figure shows that the algo-
rithm has identified two separate clusters within the overall triangular cluster;
the separate clustering of these points is not considered an error, however, as
their location and density suggests that these points may, indeed, belong to
separate clusters when compared to the remaining points.

Increasing the density scaler from α = 4.0 to a higher value of α = 6.0 did not
correct this clustering. Decreasing the scaler did, however, result in increas-
ingly fragmented clustering. An increase of the neighbourhood connectivity
successfully overcame the fragmentation issue of the cluster in Figure 15. The
result, depicted in Figure 14b, shows that the correction of the fragmentation
has come at a price, however, with the incorrect merging of the closely spaced
top two left triangular clusters.

In contrast, the single density approach of DBSCAN was found to produce
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Fig. 15. Close up view of the triangle in DS1 with fragmented clustering by Rep-
Stream with k = 4 and α = 4.0.

(a) (b)

Fig. 16. DBSCAN clustering of DS1 showing (a) significant cluster fragmentation
and unclustered points when ε = 15 and (b) the introduction of two incorrectly
merged clusters when ε = 16.

well formed higher density clusters with an ε-neighbourhood parameter of
ε = 15. The lower density clusters of DS1, however, were found to be highly
fragmented with the presence of a significant number of unclustered points
that the algorithm treated as noise. These results are shown in Figure 16a.
Decreasing the density with ε = 16 marginally decreased the cluster fragmen-
tation, as seen in Figure 16b, though at the expense of the incorrect merging
of the two top left triangular clusters.

Similar results were obtained clustering data set DS2. The RepStream pro-
duced clusters with parameters k = 4 and α = 3.0 are given in Figure 17a.
Again, the algorithm has discovered the clusters with only some minor frag-
mentation visible in two of the clusters that was not able to be overcome by
further increasing the value of α. Lower values did, however, introduce in-
creasing amounts of further fragmentation. Incrementing the neighbourhood
connectivity to k = 5 overcame the fragmentation issue although this did
once again cause several nearby clusters to be incorrectly merged as seen in
Figure 17b.

Figure 18 shows the result of clustering DS2 with DBSCAN with a selection of
ε values. The first of these, ε = 6 in Figure 18a, shows that although no clusters
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(a) (b)

Fig. 17. RepStream clustering of DS2 showing (a) good clustering with a neighbour-
hood connectivity of k = 4 and density scaler of α = 3.0 and, (b) incorrect merging
of several closely spaced clusters when the connectivity was increased to k = 5.

have been incorrectly merged, a significant number of points have remained
unclustered. Results from using a slightly higher ε-neighbourhood value of
ε = 7 in Figure 18c shows that the issue of the unclustered points remains and
has also introduced an incorrect merge between two closely positioned clusters.
Although unclustered points still remain, optimal clustering was achieved with
ε = 6.5 as seen in Figure 18b.

This demonstrates the difficulty of selecting an optimal density value without
prior knowledge of the final data distribution in the synthetic data sets. Stream
data compounds this problem as the absolute minimum density is a sensitive
measure that is potentially undergoing constant change in a data stream.
Finding optimal values of k and α for RepStream is easier as these parameters
tend to affect the relative relationships between points rather than introducing
static thresholds. The parameter sensitivity of RepStream is further discussed
in Section 5.4.

5.2 Network Intrusion Data

The KDD Cup-99 data set features network connection data derived [50] from
seven weeks of raw TCP logs consisting of both regular network traffic as
well as 24 types of simulated attacks within a military local area network.
The data is available both as a complete set that contains approximately
4.9 million records and as a 10% sub-sampled set containing 494,020 points.
Each connection record consists of 41 features plus a class ID. Of the available
dimensions, 34 continuous valued features were used for clustering and a single
outlier point was removed. Accurate clustering of this data demonstrates that
the algorithm is able to cope in real world situations where a data stream
periodically contains bursts of unexpected and unusual data records.

RepStream was tested on the sub-sampled data set using both a purity hori-
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(a) (b)

(c)

Fig. 18. DBSCAN clustering of DS2 showing (a) a lack of cluster formation with
ε = 6, (b) optimal clustering with ε = 6.5 and (c) the incorrect merger of two closely
spaced clusters when ε = 7. Unclustered points are indicated by red crosses.

zon of length h = 200 and a horizon of length h = 1, 000, two common
horizon lengths used in previous work to evaluate clustering accuracy in data
streams [4,5].

The Manhattan distance function was used to compute the similarity of data
points from features that were normalised on-the-fly. A point pi = {pi,1 . . . pi,D}
of D dimensions was normalised in each dimension d using the formula:

p′i,d =
pi,d

|P |
∑

j=1

pj,d

(22)

where |P | refers to the number of points in memory at any given time. The
nearest neighbourhood connectivity was set to k = 5 and a density scaler of
α = 1.5 was employed.

The results of the purity experiment are given in Figure 19a and Figure 19b
for h = 200 and h = 1, 000 respectively. These plots, along with the entropy
shown in Figure 19c, show that RepStream is able to accurately differentiate
between different types of attack connections.
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Fig. 19. Purity measure throughout the network intrusion data stream with horizon
of (a) h = 200 points and (b) h = 1, 000 points and (c) the cluster entropy when
k = 5 and α = 1.5.

(a) (b)

Fig. 20. Comparative purity measures of RepStream, HPStream and CluStream for
(a) h = 200 and (b) h = 1, 000 using available published results on the sub-sampled
KDD Cup 1999 data set. The RepStream parameters were k = 5 and α = 1.5.
Stream sample times match those reported in [4,5].

The accuracy of RepStream was also evaluated against published results re-
ported on the same data set for the HPStream, DenStream and CluStream
algorithms. The results of the comparisons, depicted in Figure 20 and in Fig-
ure 21, show that in most cases RepStream was able to classify network con-
nections as well as or with higher accuracy than HPStream, DenStream and
CluStream. The data stream sample times were chosen to match those re-
ported in [4,5].

31



(a) (b)

Fig. 21. Comparative purity measures of RepStream, DenStream and CluStream for
(a) h = 200 and (b) h = 1, 000 using available published results on the sub-sampled
KDD Cup 1999 data set. The RepStream parameters were k = 5 and α = 1.5.
Stream sample times match those reported in [4,5].

5.3 Forest Cover Data

The forest cover data set contained 581,012 records consisting of a total of 54
geological and geographical features that describe the environment in which
trees were observed. Records also included a class ID providing a ground truth
as to which of seven different types of canopy were present on the trees. At-
tributes consisted of a mixture of continuous valued and Boolean valued data,
the latter taking values from the set {0, 1}. Successful clustering of this data
set will demonstrate that the algorithm is able to cope with a highly dynamic
data set when compared to the network intrusion experiment in Section 5.2.

Dimensions were normalised on-the-fly as described in Section 5.2 and the
Manhattan distance function was used to measure the similarity between
points. The RepStream parameters used on this data set were k = 5 and
α = 1.5.

Figure 22a and Figure 22b show the purity measured over the data stream
for h = 200 and h = 1, 000 purity horizons. The plots show that RepStream
was able to classify the canopy types with an accuracy typically ≥ 90% over a
purity horizon of 1,000 points and typically ≥ 85% on the 200 point horizon.
The jagged appearance of the purity plots along with the entropy measure
depicted in Figure 22c is expected given that the algorithm is coping with a
dynamic data set. The degraded purity during the initial clustering results
was found to be due to the presence of all seven canopy types during the
initial portion of the data combined with a lack of prior evidence of cluster
distributions. Examining the confusion matrix throughout the stream process-
ing shows that this initial poor classification does not reoccur later with the
concurrent reappearance of all seven classes.

RepStream’s purity measurements were evaluated against HPStream and
CluStream using the results published in [5]. Figure 23 depicts the result of
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Fig. 22. Purity measure throughout the tree cover data stream over (a) a horizon of
h = 200 points, (b) a horizon of h = 1, 000 points and (c) the cluster entropy when
k = 5 and α = 1.5.

(a) (b)

Fig. 23. Comparative purity measures of RepStream, HPStream and CluStream
using available published results on the forest tree cover data set for (a) h = 200
and (b) h = 1, 000. RepStream parameters were k = 5 and α = 1.5.

this comparison, showing that the algorithm was able to classify the tree data
with consistently higher accuracy than the competing algorithms.

5.4 Parameter Sensitivity

The sensitivity of the algorithm with respect to the the neighbourhood con-
nectivity and the density scaler parameters was explored using different values
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Fig. 24. Connectivity sensitivity: purity measure throughout the network intru-
sion data stream over a horizon of 1,000 points using density scaler α = 1.5 with
(a) k = 3, (b) k = 7, (c) k = 9 and (d) k = 11.

of k and α. A purity horizon of 1,000 points was used in all results shown.

Figure 24 depicts the purity measure of RepStream on the network intrusion
data for k = 3, k = 7, k = 9 and k = 11 using a fixed scaling value of
α = 1.5. The results show that although the clustering performance of the
algorithm degrades on this data set as k is increased, reasonable results are
still produced up to k = 9 in Figure 24c. Comparing the results for k = 7
and k = 9 in Figure 24a and Figure 24b against those obtained for k = 5 in
Figure 19b, we see that only minor differences exist between these connectivity
values. The clusters discovered for the k = 3 parameter were, however, highly
fragmented. This fragmentation was progressively reduced as the value of k

was increased with large natural clusters being discovered with k ≥ 7.

Similar results were obtained when the value of k was increased for the tree
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Fig. 25. Connectivity sensitivity: purity measure throughout the tree cover data
stream over a horizon of 1,000 points using density scaler α = 1.5 with (a) k = 3,
(b) k = 7, (c) k = 9 and (d) k = 11.

cover data stream. The results, seen in Figure 25, again show a gradual increase
in classification error as the neighbourhood connectivity is increased using
values of k = 3, k = 7, k = 9 and k = 11 with a fixed density scaler of
α = 1.5. Results for k = 5 were given in Figure 22b. Fragmentation was,
again, found to be an issue using k = 3 although this was resolved with values
k ≥ 7.

The magnitude of the performance decrease that has been observed in both
the network intrusion and tree canopy data sets suggests that the clustering
accuracy of RepStream degrades gracefully when sub-optimal values of k are
chosen.

Algorithm sensitivity with regards to the density scaler was tested next. Re-
sults obtained on the network intrusion data set, seen in Figure 26, show, on
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Fig. 26. Density scaler sensitivity: purity measure throughout the network intrusion
data stream over a horizon of 1,000 points using connectivity k = 5 with (a) α = 3.0,
(b) α = 4.5 and (c) α = 6.0.

average, only marginal decreases in accuracy as the scaler value is increased
using values of α = 3.0, α = 4.5 and α = 6.0. However, contrasting this
with α = 1.5 in Figure 22b, we see that the worst case performance of the
algorithm degrades significantly. Lower performance is particularly evident at
times marking the beginning and end of some network attacks.

Differences observed on the tree cover data in Figure 27 was similarly minimal
for values of α = 3.0, α = 4.5 and α = 6.0. The choice of density scaler in this
experiment has made no significant impact on the quality of the clustering.
Results for α = 1.5 were presented in Figure 22b.

Results shown on both the network intrusion and tree canopy data sets sug-
gests that the performance of RepStream is relatively stable with respect to
the choice of density scaler.

5.5 Scale-up Experiments

Several scale-up experiments were performed to investigate how well the execu-
tion time of the algorithm scales with respect to neighbourhood connectivity,

36



 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100000  200000  300000  400000  500000  600000

Pu
ri

ty
Stream Time

(a)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100000  200000  300000  400000  500000  600000

Pu
ri

ty

Stream Time

(b)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100000  200000  300000  400000  500000  600000

Pu
ri

ty

Stream Time

(c)

Fig. 27. Density scaler sensitivity: purity measure throughout the tree cover data
stream over a horizon of 1,000 points using parameters k = 5 with (a) α = 3.0, (b)
α = 4.5 and (c) α = 6.0.

the density scaling factor, available memory and the length of the data stream.
All experiments were run on an Intel 2.33 GHz Core 2 Duo processor under
Mac OS 10.4. The RepStream implementation was single-threaded and used
only a single processor core in each execution. Unless state otherwise, connec-
tivity was set to k = 5 and a density scaler of α = 1.5 was used to process
both data sets in these experiments.

A near linear relationship between connectivity and execution time was dis-
covered in the network intrusion results in Figure 28a. The forest data set
produced a similar relationship as shown in Figure 28b. Scale-up results for
increasing values of α are presented in Figure 29a and Figure 29b for the KDD
and forest cover data sets, respectively. Both graphs show a slight increase in
execution times as the scaling factor is increased from α = 1.0 to α = 2.0.
The execution time with respect to the scaling factor is relatively linear for
higher values of α. Near linear relationships with respect to execution time
and available memory were also discovered and these are illustrated by the
results shown in Figure 30.

Finally, the execution time of RepStream with respect to the length of the data
stream is shown in Figure 31. An interesting contrast between the network
intrusion and tree canopy data sets is noticeable here. Whereas the tree data
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Fig. 28. Execution time of RepStream clustering (a) the network intrusion data and
(b) the forest canopy data as the k-nearest neighbours are increased. The scaling
factor was set to α = 1.5 in both experiments.
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Fig. 29. Execution time of RepStream clustering (a) the network intrusion data and
(b) the forest canopy data as the α scaling factor is increased. The connectivity was
set to k = 5 in both experiments.
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Fig. 30. Execution time of RepStream clustering the (a) network intrusion data and
(b) the forest canopy data as memory allocation is increased. The parameters used
in both experiments were k = 5 and α = 1.5.

set in Figure 31b shows an expected linear relationship between the number
of points processed and the execution time, the network data set in Figure 31a
displays a significant flattening out between stream time 150,000–350,000 and
again between 400,000–450,000. This behaviour is a direct result of many
identical points occurring within the stream at these times and the efficient
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Fig. 31. Execution time of RepStream clustering the (a) network intrusion data and
(b) the forest canopy data with k = 5 and α = 1.5 as the stream length is increased.

processing of them by singularity vertices.

6 Conclusions

This paper has introduced a graph-based incremental algorithm for clustering
evolving stream data. We have selected a graph-based description because it
allows us to model the spatio-temporal relationships in a data stream more
accurately than it is possible using only summary statistics. Specifically, the
graph allows a more detailed definition of the cluster boundary (rather than
using a radius based measure which implies that the cluster has circular prop-
erties) and provides an effective and detailed representation of any changes
that may occur in the cluster shape over time (the changes are reflected in
the way in which the vertices and the connectivity changes over time). A key
aspect of our is the use of representative points within the graph description
allow the algorithm to capture the general structure of the clusters without
requiring the complete cluster data to be stored in memory. The most perti-
nent of the representative vertices are stored inside a repository which is used
to recall previously discovered cluster structures in the presence of recurrent
change.

The algorithm was shown to prioritise the retention of important informa-
tion within the repository by weighting the usefulness of the representative
vertices with respect to time. This enables the algorithm to discard the least
useful cluster features when memory constraints mandate that some data be
discarded. The repository can also be used to obtain a historical perspective
on the general shape and distribution of the clusters over time and to archive
these changes for off-line analysis.

Experimental results demonstrated that the algorithm is able to effectively
classify both synthetic and real world data sets. The algorithm was compared
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against an incremental implementation of DBSCAN and shown to robustly
handle clusters of complex shapes, sizes and densities. DBSCAN, in compari-
son, is shown to be hampered by a static density threshold ill suited towards
stream processing. Results on real world data sets showed that RepStream
was able to more accurately classify well known network intrusion and for-
est canopy data sets than three of the most popular stream data clustering
algorithms: DenStream, HPStream and CluStream.

An integral component of the algorithm is the knowledge repository, a collec-
tion of the most useful representative vertices that define the shape and dis-
tribution characteristics of important cluster structures. The repository was
shown to assist with the clustering of real world network intrusion data by re-
taining historical cluster features that aid classification of data characteristic
of recurrent change.

Investigation into parameter sensitivity revealed that RepStream is fairly resis-
tant to sub-optimal selections of the nearest neighbour connectivity parameter
k and highly resistant to changes in the density scaler α. Conservative values
for either parameter were observed to result in the discovery of fragmented
clusters whereas only higher values of k tended to introduce classification er-
rors due to incorrect cluster merges.
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