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Abstract

Motivated by a desire to create smart homes that will enable the elderly to maintain

their independence for as long as possible, this thesis presents techniques for detect-

ing abnormality in human activity observed in both laboratory and real world smart

environments.

The use of stochastic models as tools for learning models of normality, with which

incoming observational data from a visual tracking system can be examined, is inves-

tigated. In particular, the Hierarchical Hidden Markov Model (HHMM) is applied to

the training of multi-level models of behaviour to show that the hierarchical structure

of the model allows for a more expressive representation of human behaviour than is

possible using flat models. The usefulness of modelling duration in models of human

activity is then investigated by comparing the classification and abnormality detection

performance of the Hidden Markov Model (HMM) against that of the Explicit State

Duration HMM (ESD-HMM). The data sets used differ primarily in the duration of

activities rather than in the ordering of the events. An extension of the ESD-HMM

where the state transition times are inferred from an observation signal that has been

augmented with pressure mat sensor data is then introduced. Work into this area is

then concluded with results from experimentation on real world data.

A data mining technique that employs Intertransaction Association Rule (IAR) mining

to discover new and changing human behaviours is then presented. The Frequent Pat-

tern Tree (FP-Tree) and the Frequent Pattern Growth (FP-Growth) algorithm are ex-

tended for IAR mining. The resulting data structure and mining algorithm, dubbed the

Extended FP-Tree (EFP-Tree) and Extended FP-Growth (EFP-Growth) respectively,

are benchmarked against the First Intra Then Inter (FITI) algorithm, the existing state

of the art algorithm for IAR mining. Results demonstrating that the EFP-Growth algo-

rithm is an order of magnitude computationally more efficient than FITI are presented

and discussed. The viability of emergent IAR mining as a technique for identifying

unexpected behaviours in a smart home environment is affirmed with a discussion of
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observations made mining emergent behaviours from sensor event data recorded in the

homes of two real world subjects.

Finally, a novel visual interface that enables emergent behaviours to be examined in

the context of the original data is introduced. Mapping emergent IARs back into the

original data space, the interface is demonstrated to allow greater insight to be gained

in significantly less time than is possible by manual inspection of the sensor event log

data.
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Chapter 1

Introduction

Current trends suggest that the global population will consist predominately

of older people, those aged sixty and over, in as little as fifty years

(United Nations Population Division, 2002). This demographic shift is expected to

lead to an increase in demand for care of the elderly and, as a result, in the need for

smart homes; intelligent environments that are able to assist its occupants in maintain-

ing independent lifestyles for as long as possible (Mynatt et al., 2000). Several such

projects are currently underway. The MavHome (Cook et al., 2003) project and the

Adaptive House (Mozer, 2004) both seek to develop home automation that does not

require users to manually program the components in their homes. The guiding phi-

losophy behind these projects is that a true automated home is an environment that is

capable of learning, recognising and predicting its occupants’ behaviour, able to reason

about the state of the home and to adapt itself over time to the changing needs of

its occupants. Researchers at the Aware Home (Kidd et al., 1999) are exploring issues

such as context aware computing, human-computer-interaction and occupant tracking

and identification with an application to caring for the elderly. Recently, the opening

of the PlaceLab (Intille et al., 2005) was announced. This project provides a live in

laboratory facility for multidisciplinary research into areas such as human behaviour

and the use of technology to simplify home control and promote healthy living.

The work detailed in this thesis is motivated by a desire to create homes that are

able to detect the presence of new, possibly abnormal, behaviour in their occupants

and to take action accordingly. Appropriate action may be to query the occupant

on the new behaviour, to jog their memory on a task that they were carrying out or

even to alert an occupant’s relative that their assistance is required. The central issue

faced here is the identification of abnormality present in behaviours observed through
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visual and event driven sensory data obtained from pressure mat sensors and reed

switches. Existing approaches to accomplish this vary from statistical analysis of the

time and frequency with which behaviours or events are seen (Hauptmann et al., 2004)

to the deployment of stand-alone devices that recognise specific anomalies such as falls

(Sixsmith and Johnson, 2004).

This thesis details two different approaches to abnormality detection that build repre-

sentations of normality with which incoming data from a large spatio-temporal search

space can be examined for behavioural anomalies. The first method employs the use

of stochastic models to encode sequences of observations returned by a visual tracking

system monitoring a subject in their home. In the second, data mining techniques

are employed to distill the associative relationship of sensor events recorded in a smart

home into a set of core rules that are representative of new and changing behaviours. An

accompanying visual data mining interface with which discovered emergent behaviours

can be interpreted is also discussed.

1.1 Aims and Approach

This thesis examines the problem of detecting abnormality in human behaviour in a

smart home environment. The objectives are to:

• Investigate stochastic models representative of normal human behaviours from

observations gathered by a visual tracking system and to apply these models to

the task of recognising normal behaviours and hence as classifiers of abnormality.

• Explore data mining techniques for making sense of sensor event data captured

from an array of sensors deployed within a smart home environment.

The first part of this thesis tackles the issue of modelling behaviours using stochastic

models. Here, application of the Hidden Markov Model (HMM) is an obvious choice

given the spatio-temporal nature of the problem domain. The large state space re-

quired to train HMMs on large scale daily activities is undesirable, however, given that

the hierarchical nature of human behaviour suggests that the problem domain may

be decomposed into increasingly fine grained activities down to a level of observable

atomic events (Zacks and Tversky, 2001). Work into the application of stochastic mod-

els therefore begins with an examination of the suitability of the Hierarchical Hidden

Markov Model (HHMM) to learning multi-level representations of sequences of human

activity gathered using a visual tracker. Of interest here is the ability of the HHMM
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to learn the higher level relationships between atomic observations such that the re-

sulting models may be reused in the construction of increasingly complex hierarchical

representations of large scale human activity. The HHMM offers the ability to learn

behavioural patterns such that their structural meaning can be found and used to aid

interpretation of the trained models.

Activity duration is then considered. Duration is an important feature in the recog-

nition of human behaviour and in the identification of anomalies. It is not, however,

explicitly modelled by the standard HMM and HHMM. Although these models are able

to accommodate different durations, the lack of an explicit duration model suggests that

the HMM and the HHMM do not map well to the abnormality detection domain when

the abnormality is caused by unusual duration in activity. The importance of incorpo-

rating duration in a model of human behaviour is therefore investigated using activity

sequences where the ordering of events is similar yet the duration of the activities dif-

fers. The standard HMM and the Explicit State Duration HMM (ESD-HMM), also

known as the Hidden Semi-Markov Model (HSMM), are investigated both in terms of

their ability to recognise known normal behaviours and as classifiers of abnormality

caused by unusual activity durations.

An extension of the ESD-HMM in which the state durations are given by an observation

signal augmented with the state transition times is then examined. The resulting

Observed Time Indices ESD-HMM (OTI ESD-HMM) offers the ability to incorporate

duration into the HMM using the state transition times obtained from strategically

deployed pressure mat sensors. Of interest here is whether the OTI ESD-HMM is able

to offer any advantages over the standard ESD-HMM when used to model observed

human behaviour and in the detection of abnormality.

The specific aims of this first part of the thesis are to:

• Investigate the construction of hierarchical representations of simple activities

that are suitable for reuse as the atomic elements of higher level long term be-

haviours.

• Explore how the lack of an explicit model of duration reduces the practical ap-

plication of the HMM and, by extension, the HHMM for modelling human be-

haviour.

• Explore the extension of the ESD-HMM to exploit observable activity durations.

• Investigate the application of the OTI ESD-HMM to real world data and compare

its performance in behaviour recognition and abnormality detection against that
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of the HMM.

The second part of the thesis concentrates on the application of Intertransaction As-

sociation Rules (IARs) (Lu et al., 1998) to mine the frequently occurring associative

relationships between sensor events that are triggered in a home as a person goes about

their daily routines. IARs are implication rules that capture the non-sequential asso-

ciations between events occurring within a single transaction, or time interval. IARs

retain some of the higher level temporal context in which the events occur in the form

of the intertransaction relationships between frequent intratransaction itemsets.

Work in IAR mining begins with the introduction of a new algorithm for IAR mining

that is more computationally efficient than previous methods. The Extended FP-

Growth (EFP-Growth) algorithm and its accompanying Extended FP-Tree (EFP-Tree)

data structure are proposed as extensions of the Frequent Pattern Tree (FP-Tree) and

the Frequent Pattern Growth (FP-Growth) algorithm (Han et al., 2000, 2004). The

EFP-Tree allows the pattern growth property, a divide and conquer technique that

avoids candidate rule generation, to be applied to the discovery of intertransaction

associations. Emergent IAR mining is then introduced as a technique for finding those

rules whose frequent presence in a set of new sensor data is unexpected given a historical

data set. The purpose here is to identify those associations whose presence signals a

new or unusually frequent behaviour.

A visual data mining interface that enables users to interpret discovered rules without

requiring the sensor event logs to be manually inspected is then proposed. The interface

aims to reduce the burden of an otherwise cumbersome task by permitting users to

visualise emergent rules in the context of the original sensor data.

The data mining specific aims are to:

• Investigate a new algorithm for IAR mining that eliminates the need for the

computationally expensive candidate generation and testing procedure employed

by current levelwise IAR mining algorithms.

• Identify the core set of rules whose presence may indicate abnormality.

• Present these rules in a format that allows for easy interpretation while eliminat-

ing the need for manual inspection of the rules by trawling through the original

sensor event logs.
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1.2 Significance and Contributions

The contributions of the stochastic models work in this thesis are:

• An investigation into the use of stochastic models for abnormality detection in

human behaviours. It is shown that the HHMM is suitable for construction of

multi-level models of human activity sequences such that behavioural subpatterns

are represented by HHMM submodels.

• Incorporation of duration in models of human behaviour as a measure of abnor-

mality. To this end, an extension of the Explicit State Duration HMM that allows

known state durations to be used in model training and inferencing is provided.

The Observed Time Indices ESD-HMM is introduced and shown to be superior to

the standard ESD-HMM due to its ability to more accurately represent sequences

of activity upon which it is trained.

• The performance of the models are compared using real world data gathered by

a visual tracker deployed in a volunteer subject’s home.

The data mining part of the thesis makes the following contributions:

• A new algorithm for Intertransaction Association Rule (IAR) mining is presented.

The proposed Extended FP-Tree and Extended FP-Growth algorithms avoid the

stepwise candidate generation approach employed in current IAR mining algo-

rithms. Experimental results on both synthetic and real world data demonstrates

an order of magnitude improvement in the computational complexity of the new

algorithm over existing techniques.

• A novel application of IAR mining for abnormality detection is introduced via

the mining of emergent behaviours by identifying rules that are representative of

activity which has not been seen previously or whose frequency is unusually high

given known past activities. Real world data is used to demonstrate the practical

application of emergent behaviour mining by identifying both sensor aberrations

and new and changing behaviours.

• A novel visual data mining technique is proposed to aid the interpretation of

emergent behaviours. The visual interface provides a significantly simpler means

of interpreting emergent behaviours by mapping these behaviours back onto the

space of the original sensor data. Rule interpretations made using the visual
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interface are compared with those interpretations gathered via manual inspection

of the rules using the sensor event logs. Observations made demonstrate the

benefits of the visual data mining technique over the manual inspection process.

1.3 Structure of the Thesis

The structure of this thesis is as follows. A review of related work is presented in

Chapter 2 beginning with an overview of the HMM, HHMM and ESD-HMM graphical

models. Current data mining algorithms and visual data mining techniques pertinent

to the thesis are then examined.

Chapter 3 investigates the suitability of the HHMM to the problem of multi-level mod-

elling of human behaviours and examines the importance of incorporating duration in

models of human activity. An extension to the ESD-HMM in which the state transi-

tion times are provided by an observation signal augmented with pressure mat sensor

information is then proposed. The feasibility of using these models in the real world

is tested with a deployment of the tracking and inferencing system in the home of a

volunteer subject.

Contributions made in the field of data mining are presented in Chapter 4. An extension

of the Frequent Pattern Tree (FP-Tree) allowing IARs to be mined using the pattern

growth property is proposed. An application of IAR mining to the discovery of emergent

human behaviours is then presented using sensor event log data recorded in the homes

of two volunteer subjects.

A visual data mining interface for exploring emergent behaviours is introduced along

with a discussion of the design rationale in Chapter 5. The real world sensor event

logs are analysed again in a repeat of the experimentation in Chapter 4. Results and

observations made using the visual data mining tool are contrasted to the observations

made in Chapter 4 via manual inspection of the emergent IARs in the context of the

event logs.

Finally, a concluding summary of the work of this thesis is presented in Chapter 6 with

ideas for possible future work.
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Chapter 2

Related Work

The related works upon which this thesis is founded originate from two areas within

the field of computer science: stochastic models and data mining. Although differing,

both stochastic models and data mining offer techniques and approaches that can be

applied to the problem of discovering abnormality in human behaviours. The works

that are considered to be most pertinent to this thesis from both of these research areas

will be reviewed in this chapter.

The stochastic models component of the review begins with an introduction to the

Hidden Markov Model (HMM) in Section 2.1. A brief overview of the classic problems

of inferencing, decoding and parameter learning is given. An introduction to the Ex-

plicit State Duration HMM, known also as the Hidden Semi-Markov Model, and the

Hierarchical HMM is given in Section 2.2 and Section 2.3 respectively.

Review of the data mining literature begins in Section 2.4 with a look at the problem

of association rule mining. Two seminal algorithms for association rule mining, Apriori

(Agrawal et al., 1993) and Frequent Pattern Growth (Han et al., 2000), are respectively

detailed in Section 2.4.1 and Section 2.4.2. Intertransaction association rule mining,

an extension of traditional association rule mining that considers relationships among

items or events between transactions, will be considered in Section 2.5 with a detailed

examination of the E-Apriori algorithm in Section 2.5.1 and the First Intra Then Inter

(FITI) algorithm in Section 2.5.2. Finally, an overview of related work in visualisation

and exploration of discovered association rules is provided in Section 2.6. A summary

of this review is then presented in Section 2.7.
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2.1 Hidden Markov Model

The Hidden Markov Model (HMM) (Rabiner, 1989) is a first order Markov process

whose state layer is not directly observable. Rather, the state of the model and its

parameters are probabilistically deduced from an observable signal. HMMs have, since

their inception in the 1960s, been applied to a diverse range of fields from speech

recognition, activity recognition, handwriting recognition and signal processing (Cappé,

2001).

Following the notation of Rabiner (1989), a HMM of N hidden states is said to gen-

erate a sequence of observations O = [o1, o2, . . . ot, . . . oT ] over time t from a code-

book V = {v1, v2, . . . vk, . . . VM} of M possible discrete features using the parameter

set λ = (Π, A,B). The parameter Π = {πi} is the initial state distribution; πi being

the probability that the ith state in the model will be activated at time t = 1. The

state transition probabilities are defined by A = {aij} such that the probability of

transitioning to a state j from state i is aij . The observation emission probabilities are

given as B = {bi (k)} where bi (k) is the likelihood that the ith state will generate an

observation Vk. Finally, the states activated at each discrete time period t are given as

Q = [q1, q2, . . . qt, . . . qT ]. A Finite State Machine (FSM) representation of a HMM is

given in Figure 2.1. A graphical representation of a HMM rolled out over time is given

in Figure 2.2.

Three well-known issues are associated with HMMs. The first, inferencing, in Sec-

tion 2.1.1 is concerned with computing the probability that a model will generate a

given observation sequence. The decoding problem in Section 2.1.2 seeks to find an

optimal state sequence that best “explains” an observation sequence. The final HMM

problem, training, is concerned with the learning of the model parameters to opti-

mise the probability Pr (O|λ). A well-known means by which to do so is presented in

Section 2.1.3.

Figure 2.1: Finite state machine representation of a three state HMM showing
the possible state transitions.
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. . .

. . .

q1 q2 q3 qT

o1 o2 o3 oT

Figure 2.2: A HMM rolled out over time. At each discrete time interval t
an observation ot is emitted by state qt to produce the observation sequence
O = {o1, o2, . . . ot, . . . oT }.

2.1.1 Inferencing

Inferencing is an important task in the HMM. Its solution enables the use of the model

in classification; sequence classification becoming a problem of finding the HMM most

likely to generate a given sequence from a set of HMMs representative of the available

classes. It is also a first step towards resolution of the decoding and training problems.

Finding the probability of Pr (o1 . . . oT |λ) is achieved via the recursive forwards proce-

dure

αt (i) = Pr (o1 . . . ot, qt = i|λ) (2.1)

which is calculated as:

α1 (i) = πibi (o1) (2.2)

αt (i) =





N
∑

j=1

αt−1 (j) aji



 bi (ot) . (2.3)

The probability of a sequence O being generated is found by summing over the possible

N states the model may be in at time T :

Pr (O|λ) =

N
∑

i=1

αT (i) . (2.4)
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2.1.2 Decoding

Decoding seeks to find the state sequence that most likely explains an observation se-

quence. It requires the probability Pr (qt = i|ot, λ), the likelihood of the model being in

a given state at time t, to be computed. An additional backwards smoothing component

β is required to find

βt (i) = Pr (ot+1 . . . OT |qt = i, λ) (2.5)

which can be recursively computed by:

βT (i) = 1 (2.6)

βt (i) =
N
∑

j=1

aijbj (ot+1)βt+1 (j) . (2.7)

The probability Pr (qt = i|ot, λ) can then be computed using the Forwards-Backwards

procedure also known as the Baum-Welch algorithm (Baum et al., 1970):

γt (i) =
αt (i) βt (i)

N
∑

i=1

αt (i)βt (i)

. (2.8)

The optimal state at time t is found by finding the state qt that returns the highest

likelihood:

qt = argmax
1≤i≤N

Pr (qt = i|ot, λ) (2.9)

= argmax
1≤i≤N

[γt (i)] . (2.10)

A procedure for finding the optimal state sequence will need to consider the optimal

state qt with respect to the optimal path leading to qt−1. This can be handled via the
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Viterbi algorithm (Forney, 1973):

δ1 (i) = πibi (o1) (2.11)

ψ1 (i) = 0 (2.12)

δt = max
1≤j≤N

[δt−1 (j) aji] bi (ot) (2.13)

ψt (i) = argmax
1≤j≤N

[δt−1 (j) aji] (2.14)

p∗ = max
1≤i≤N

[δT (i)] (2.15)

q∗T = argmax
1≤i≤N

[δT (i)] (2.16)

where δt (i) is the highest likelihood for a path at time t that explains the observations

o1 . . . oT and where ψt (i) is the state at time t − 1 that maximised the likelihood of

reaching state i at time t. The complete optimal state sequence can then be found by

backtracking from p∗ and q∗.

2.1.3 Training

The HMM model parameters are typically optimised for a given observation sequence,

or set of sequences, using Expectation Maximisation (EM) via the Baum-Welch al-

gorithm. Model parameters are randomly initialised and then adapted towards the

training data using the EM two-step iterative process; the first step calculates the

expected sufficient statistics (ESS) for each parameter in the model; the second step

maximises the ESS by normalising the parameter probability.

The parameter estimation formulae for the HMM are:

π̂i =
πibi (o1)β1 (i)

Pr (O|λ)
(2.17)

âij =

T−1
∑

t=1

αt (i) aijbj (ot+1)βt+1 (j)

N
∑

j=1

T−1
∑

t=1

αt (i) aijbj (ot+1) βt+1 (j)

(2.18)

b̂i (k) =

T−1
∑

t=1
s.t. ot=vk

αt (i) βt (i)

T−1
∑

t=1

αt (i) βt (i)

(2.19)
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2.1.4 Application to Activity Recognition

Hidden Markov Models have been employed in human activity recognition. Notable

examples include the work of Yamato et al. (1992) who recognised tennis strokes from

foreground segmented video footage. The video was sampled to provide only a few

images per sequence for use in training and recognition. A grid pattern was used to

divide up the images such that the ratio of foreground to background pixels in each

grid could be used as features in the HMM.

Coupled Hidden Markov Models (CHMMs), extensions of the HMM for modelling

independent yet interacting processes, were used in Oliver et al. (2000) to model the

interactions of people in an outdoor scene observed by a visual tracker. Models were first

trained on data from synthetic agents and then updated using real world data. Results

demonstrated that the models were able to detect and classify human interactions with

good results. CHMMs were earlier used to model T’ai Chi gestures by Brand et al.

(1997).

The use of layered HMMs to monitor the behaviour of people working in an office

environment was introduced in Oliver et al. (2002). Here, the outputs from lower level

HMMs were used as input into higher layer HMMs to distill the relationships of the

lower layers into increasingly granular representations of the activities being modelled.

Ivanov and Bobick (2000) employed Stochastic Context Free Grammars (SCFGs) to

recognise activities. HMMs were used to detect the occurrence of low-level events

representing the primitives used in a grammar parser and applied to both gesture

recognition and outdoor surveillance.

The work of Brand and Kettnaker (2000) demonstrated the application of entropy min-

imisation in HMM parameter learning with trained models featuring clearly recognis-

able structure that mimicked the observation signal more closely than conventional EM.

The entropically estimated models were applied alongside the HMM to the problem of

event recognition and abnormality detection in video footage from both an office en-

vironment and an outdoor traffic scene. In the former, the descriptive features of an

ellipse drawn around the foreground segmented blob of a single office worker was used

to train the models and to classify between a variety of office activities. Abnormal

behaviours in the form of an activity being acted out in reverse and jittery behaviour

due to excessive consumption of coffee by the test subject were able to be more reliably

detected by the entropically trained HMM than by the standard model. The former

model was also shown to have sound application in the detection of abnormality us-
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ing flow vectors to learn the normal behaviour of vehicles and pedestrians in a traffic

surveillance scenario.

A review of earlier works on activity recognition involving HMMs with a focus on

motion analysis and gesture recognition can be found as part of a review of motion

analysis by Aggarwal and Cai (1999).

2.2 Explicit State Duration HMM

Explicit state duration modelling (Ferguson, 1980; Russell and Moore, 1985) was in-

troduced into the HMM to more accurately capture the temporal structure of speech

than is possible with the standard HMM. Duration is incorporated into the model via

the variable pi (d) such that 1 ≤ d ≤ D where D constrains the maximum duration.

In its non-parametric form, pi is a vector of discrete duration probabilities such that
∑D

d=1 pi (d) = 1. The self transition probabilities are set so that aii = 0. A graphical

representation of the Explicit State Duration HMM (ESD-HMM), alternatively known

as the Hidden Semi-Markov Model (HSMM), in which the model is shown rolled out

over time is given in Figure 2.3. The FSM representation of the model remains the

same as for the HMM depicted in Figure 2.1. The generative process is similar to that

of the HMM with the addition that the number of discrete-time steps a state i will

remain active prior to making a transition to another state j (i 6= j) is selected from

the state duration distribution P = {Pi (d)} upon activation. For clarity, the notation

λ = (Π, A,B, P ) is used to represent the ESD-HMM parameters.

The Forwards-Backwards variables differ slightly to those of the HMM to accommodate

. . .

. . .. . . . . . . . .

q1 q2 qK

o1 o2 od1
od1+1 od1+2 od1+d2 od1+...+dk−1+1 oT

Figure 2.3: A ESD-HMM rolled out over time. At each discrete time interval
the tth observation ot is emitted by a state qk to produce the observation
sequence O = [o1, o2, . . . ot, . . . oT ]. A state qk is active for duration dk prior to
making a transition to another state.
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the starting and ending times of the hidden states (Rabiner, 1989):

αt (i) = Pr (o1 . . . ot, qi ends at t|λ) (2.20)

α∗t (i) = Pr (o1 . . . ot, qi begins at t+ 1|λ) (2.21)

βt (i) = Pr (ot+1 . . . oT |qi ends at t, λ) (2.22)

β∗t (i) = Pr (ot+1 . . . oT |qi begins at t+ 1, λ) . (2.23)

The model re-estimation formulas for the Explicit State Duration HMM (ESD-HMM)

are similarly presented:

π̂i =
πiβ
∗
0(i)

P (O|λ)
(2.24)

âij =

T
∑

t=1

αt(i)aijβ
∗
t (j)

N
∑

j=1

T
∑

t=1

αt(i)aijβ
∗
t (j)

(2.25)

b̂i (k) =

T
∑

t=1
s.t. ot=k

[(

πiβ
∗
0(i) +

t−1
∑

τ=1

α∗τ (i)β
∗
τ

)

−

(

t−1
∑

τ=1

ατ (i)βτ (i)

)]

M
∑

k=1

T
∑

t=1
s.t. ot=vk

[(

πiβ
∗
0(i) +

t−1
∑

τ=1

α∗τ (i)β
∗
τ

)

−

(

t−1
∑

τ=1

ατ (i)βτ (i)

)] (2.26)

p̂i(d) =

πipi (d) βd(i)
d
∏

s=1

bi (os) +
T−d
∑

t=1

α∗t (i) pi (d) βt+d (i)
t+d
∏

s=t+1

bi (os)

D
∑

d=1

[

πipi(d)βd(i)
d
∏

s=1

bi(os) +
T−d
∑

t=1

α∗t (i) pi (d) βt+d (i)
t+d
∏

s=t+1

bi (os)

] . (2.27)

Unfortunately, the discrete state duration probabilities defined by P requires that a

significant amount of data be available to adequately train the model. Identifying this

limitation, Levinson (1986) proposed a model using the continuous gamma distribution

while Mitchell and Jamieson (1993) suggested that the exponential family be used.

Recently, the application of the Coxian distribution was demonstrated as a means of
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modelling the state durations in the switching HSMM (Duong et al., 2005), a special

case of the two layer Hierarchical HMM.

Variations of the ESD-HMM in which the duration of state occupancy conditions the

state transition likelihoods (Sin and Kim, 1995; Vaseghi, 1995) and the observation

emission likelihoods (Park et al., 1996) have also been introduced.

2.3 Hierarchical HMM

The HHMM was first proposed in Fine et al. (1998) and is a special case of a SCFG.

The authors applied the model to handwriting detection, demonstrating that a HHMM

trained on a single handwritten word is able to learn the hierarchical nature of the

training data by populating the lowest states in the model topology with observations

mapping to atomic strokes, compound strokes representing letters and combinations of

letters at the middle layers and finally the word itself at the top level.

The HHMM as used in this thesis will be formally introduced following the notation

presented in Fine et al. (1998). An observation sequence O = [o1, o2, . . . , oT ] is defined

to be a finite length string from all possible strings
∑∗ from the finite alphabet

∑

.

States within the HHMM are represented by qd
i where d ∈ [1, 2, . . . ,D − 1,D] denotes

the hierarchy level and i the state index relative to the parent. The state index may

be omitted if it is clear which state is being referred to. States are one of three types:

internal, end or production. Internal states are themselves HHMMs and may have

an arbitrary number of children states, the number of non-end sub-states of state qd
i

being denoted by |qd
i |. Production and end states do not have children. Vertical and

horizontal transition probabilities are defined for each internal state as the vector Πqd

and the matrix Aqd

respectively. An internal state must always perform a vertical

transition down to one of its children before a horizontal transition may be made with

control of the transitions returning to the calling state only when a lower state has made

a horizontal transition to an end state. The end state is a special token state that exists

only to signal when an upwards vertical transition is to be made. The probability of

state qd−1 vertically transitioning to sub-state qd
i is specified as πqd−1 (

qd
i

)

while the

probability of state qd
i making a horizontal transition to state qd

j is written as aqd

ij .

Production nodes are the only states within the HHMM that emit observations and

are much like the states of a HMM. The discrete probability density function (PDF)

of the production nodes is represented as the vector BqD

which defines the probability

of state qD producing observation vk as bq
D

(k). The model parameters are denoted in
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the compact form λ = (Π, A,B). Figure 2.4 shows a FSM representation of a HHMM

while Figure 2.5 depicts a HHMM that has been unrolled over time.

To compliment the forward α and backward β path variables of the HMM, the HHMM

introduces the variables χ and ξ corresponding to the downward and upward transition

probabilities respectively. The notation and meaning of the path variables is given by:

α
(

t, t+ k, qd
i , q

d−1
)

= Pr
(

ot . . . ot+k, q
d
i completed at t+ k|qd−1 started at t

)

(2.28)

β
(

t, t+ k, qd
i , q

d−1
)

= Pr
(

ot . . . ot+k, |q
d
i started at t, qd−1 completed at t+ k

)

(2.29)

ξ
(

t, qd
i , q

d
j , q

d−1
)

= Pr
(

o1 . . . ot, q
d
i transitions to qd

j , ot+1 . . . oT |λ
)

(2.30)

χ
(

t, qd
i , q

d−1
)

= Pr
(

o1 . . . ot−1, q
d−1 transitions to qd

i , ot . . . oT |λ
)

. (2.31)

The auxiliary variables γin and γout are defined as follows:

γin

(

t, qd
i , q

d−1
)

=

|qd−1|
∑

k=1

ξ
(

t− 1, qd
k, q

d
i , q

d−1
)

(2.32)

γout

(

t, qd
i , q

d−1
)

=

|qd−1|
∑

k=1

ξ
(

t− 1, qd
i , q

d
k, q

d−1
)

. (2.33)

Readers are invited to refer to Fine et al. (1998) for the complete definitions and deriva-

tions of the path variables and their auxiliary variables.

The HHMM re-estimation formulas required for training are:

π̂q1

(q2i ) =
χ
(

1, q22 , q
1
)

|q1
i |
∑

i=1

χ
(

1, q22 , q
1
)

(2.34)

π̂qd−1

(qd
i ) =

T
∑

t=1

χ
(

t, qd
i , q

d−1
)

|qd−1|
∑

i=1

T
∑

t=1

χ
(

t, qd
i , q

d−1
)

(2.35)
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Figure 2.4: Finite state machine representation of a HHMM showing the
possible state transitions between the root (R) node, the internal (I) states
and the production (P) states.
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Level 1

Level 2

Level D

(Production)
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Figure 2.5: A HHMM rolled out over time. At each discrete time interval t the
observation ot is emitted by a production state qD

i to produce the observation
sequence O = [o1, o2, . . . ot, . . . oT ]. Control returns to a state qd

i when one of
its substates qd+1

j makes a transition to an end state. End states are marked
with an E.
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â
qd−1

ij =

T
∑

t=1

ξ
(

t, qd
i , q

d−1
)

T
∑

t=1

γout

(

t, qd
i , q

d−1
)

(2.36)

b̂
qD−1

qD
i

(vk) =

T
∑

t=1
s.t. ot=vk

χ
(

qD
i , q

D−1
)

+
∑

t>1,ot=vk

γin

(

t, qD
i , q

D−1
)

T
∑

t=1

χ
(

qD
i , q

D−1
)

+
∑

t>1,ot=vk

γin

(

t, qD
i , q

D−1
)

. (2.37)

The concept of hierarchical HMMs has since been applied in the extension

of Partially Observable Markov Decision Processes (POMDPs) to Hierarchical

POMDPs (HPOMDPs) and used in indoor environment learning for robot navigation

(Theocharous, 2002). Murphy and Paskin (2001) have shown how a Dynamic Bayesian

Network (DBN) representation of the HHMM can be utilised to reduce the inference

complexity of the finite state machine (FSM) HHMM from O
(

T 3
)

down to O (T ) for

use in situations where exponential complexity with regards to the model depth is

tolerable. The HHMM was recently extended in Phung et al. (2004) to allow for the

sharing of substructures to reduce the computational requirements for inferencing and

training with improved parameter learning accuracy while requiring less training data

than the standard HHMM.

Increased accuracy in information extraction from technical documents was the moti-

vating goal in Skounakis et al. (2003) who presented an extension to the HHMM termed

Context HHMM (CHHMM) for capturing the grammatical structure in biomedical

texts. CHHMM modeled the relationships between domain specific and neighbouring

words which could then be used to extract meaning from phrases with a higher precision

and recall than previously proposed methods. A Monte Carlo approach to unsuper-

vised learning of the hierarchical HMM topography with an application to learning the

statistical structure of soccer videos has been discussed in Xie et al. (2003).

Similar to the HHMM, the Abstract Hidden Markov model (AHMM) (Bui et al., 2001,

2002) is a hierarchical stochastic model for representing a hierarchical abstraction of

an agent’s state and goals at varying levels of detail. The AHMM extends the HHMM

by allowing the refinement of a layer into sequences at the lower level to be dependent
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on the current “environment” state. This allows for simple types of context-sensitive

behaviours to be modelled. Inference scalability in the AHMM is attained by limiting

interaction between chains to only those directly above or below it. The AHMM has

recently been applied to tracking behaviour and recognising activities being carried out

by two people in a computer vision laboratory (Nguyen et al., 2002). In this experiment

the authors were able to successfully distinguish between a person interacting with an

object and only passing by the object, predicting the subjects’ intentions only through

observations of their location.

2.4 Association Rule Mining

The class of pattern mining most relevant to this thesis is the classic data mining

problem of association rule mining, or “market basket” analysis, first introduced by

Agrawal et al. (1993). Association mining is concerned with the discovery of sets of

items that frequently occur together within the records of a transactional database.

Association rule mining is, essentially, a counting exercise; the problem being tackled

is how to efficiently find, possibly large, subsets of frequently occurring associations

within a combinatorial search space.

The problem can be defined as follows. Let there be a database DB = 〈T1T2 . . . TN 〉 of

transactions Ti (1 ≤ i ≤ N) such that Ti (x) ∈ I ∀ items x in Ti where I is the set of

all items I =
{

a1a2 . . . ai . . . aM
}

within DB. We wish to find associations, or itemsets,

among the transactions Ti in DB that are implication rules of the form X ⇒ Y with

the properties X ⊆ I, Y ⊆ I and X ∩ Y = ∅.

A rule r is considered to be of interest, or significant, when its support and confidence

measures meet some arbitrary thresholds. The support and confidence measures are

calculated as
|Txy|
N

and
|Txy|
|Tx|

respectively where |Txy| is the number of transactions in

DB containing the items X∪Y , |Tx| is the number of transactions in DB containing all

items X and N is the number of transactions in DB. The support of a rule is a simple

measure of the rule frequency; the most frequent rules being likely to reflect common

knowledge about a domain while rules with lower support may highlight insights that

are little known and may even be unexpected. The confidence measure, in contrast, is

a statistical measure of the accuracy of the rule’s implication. That is, how confident

the implication that a transaction containing the items in X will also contain the items

in Y .

The definition of significance used to mine a database is dependent on the applica-
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tion domain; alternative measures of interestingness may be chosen in place of, or in

conjunction with, the traditional support and confidence thresholds (Tan et al., 2002).

Constraints may also be placed on the mining such that only a subset of rules are

returned dependent on inclusions or exclusions of certain items in the rule antecedent

or consequent.

2.4.1 Apriori

The most well known method for the mining of association rules is the Apriori algorithm

(Agrawal and Srikant, 1994)1, an extension of the original algorithm of Agrawal et al.

(1993) that exploits the support monotonicity property of association rules. The mono-

tonicity property guarantees that the support of k-length itemsets will be equal to or

less than the support of the (k − 1)-length subsets of the rule; it is used in Apriori to

restrict the search space at each pass k over the database to those itemsets that contain

known frequent subsets from the previous pass.

Apriori is presented algorithmically as Algorithm 2.1 and works as follows. An initial

pass is made over the database DB to collect the frequency counts of each item. Those

items that meet a minimum support threshold α are placed into the set of frequent items

L1 ∈ L where L = {L1, L2, . . . , Lk, . . . , LK} is the set of frequent itemsets discovered

at each pass k over DB; all other items being discarded. The stepwise phase of the

algorithm now begins, the algorithm using the known frequent items in the set Lk−1

from the previous pass to generate the candidate itemsets for the kth pass over DB.

Two itemsets p ∈ Lk−1 and q ∈ Lk−1 (p 6= q) may be joined to produce a new candidate

itemset when p1 = q1, p2 = q2, . . . , pk−2 = qk−2 and pk−1 < qk−1, it being assumed that

items within DB are presented to Apriori in their lexicographic order and that this

order is maintained in all generated itemsets. Each newly generated candidate is tested

to ensure that all its (k−1)-length subsets are known to be supported, else the candidate

is discarded. The frequency of all remaining candidates is then tested by a traversal over

the database, the entire procedure ending when no more candidate items are generated.

Agrawal and Srikant (1994) also introduced the AprioriTid algorithm, a modification

that transposes the original database into a structure of lookup tables to improve the

efficiency of candidate generation and itemset counting, and to avoid the need for

multiple database passes to be made. As the size of the data structures may be larger

than available memory at the earlier stages of mining due to a potentially large number

of candidate itemsets, the authors proposed AprioriHybrid as a hybrid mining method

1See also Mannila et al. (1994) for similar work conducted independently.
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Algorithm 2.1: Apriori
Input: Transaction Database DB, minimum support threshold α

Output: Complete set of frequent associations L = 〈L1, L2, . . . , Lk, . . . , LK〉

Method:
C1 ← frequency of all single items in DB;
L1 ← {c ∈ C1| support (c) ≥ α};

k = 2;
While Lk−1 6= ∅ do

// Generate the candidate itemsets

For i← 1 to |Lk−1| − 1 do

p← Lk−1 (i);
For j ← i + 1 to |Lk−1| do

q ← Lk−1 (j);
If px = qx (1 ≤ x ≤ k − 2) and pk−1 < qk−1 then

Ck ← Ck ∪ (p ∪ q);
end

end

end

// Prune unsupported candidates

For each c ∈ Ck do
prune c from Ck unless s ∈ Lk−1 ∀ (k − 1)-length subsets s of Ck;

end

// Find the frequency of the candidate itemsets

For each transaction Ti ∈ DB do

For each candidate c ∈ Ck do

If c ∈ Ti then
c.count++;

end

end

end

Lk ← {c ∈ Ck| support (c) ≥ α};
k++;

end
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that employs the Apriori algorithm for the earlier stages of mining before switching to

AprioriTid once the number of candidate itemsets is low enough to fit into memory.

Improving the efficiency of Apriori and finding better suited alternatives to the algo-

rithm has been the focus of much research. For example, Savasere et al. (1995) proposed

partitioning to reduce the number of passes required to be made over a database. In

this work, a database is divided into smaller partitions which are independently mined

to find the frequent itemsets they contain. The localized frequent itemsets are then

combined to generate a list of potentially frequent itemsets over the entire database.

Their support is then verified to produce the final complete set of frequent associations.

Toivonen (1996) introduced a method of improving the efficiency of candidate genera-

tion by sampling the records of a large database. This probabilistic approach greatly

reduces the computational and I/O overhead of mining such databases by requiring

that only a single full pass over the data to accurately measure and test the frequency

of the candidate associations.

Hashing was used by Park et al. (1997) for counting and candidate generation. In

this work the count of all possible (k + 1)-length candidate itemsets was stored within

the bucket of a hash table whilst the frequency of the k-length itemsets was being

tested. The (k + 1)-length candidates could then be pruned by considering the count

of the bucket into which they were hashed prior to making a pass over the database.

The advantage in their method was the early pruning of generated candidate itemsets,

especially at the earlier stages of mining where Apriori is known to generate a large

number of itemsets. Holt and Chung (2002) extended this principle by assigning each

item within a database a hash table of transaction identifiers (TIDs). Each occurrence

of an item in the database is noted by hashing the TID of the transaction in which

it occurs and incrementing the count of its bucket. These hash tables can then be

employed to restrict the search space of the mining algorithm.

The algorithms mentioned here are but a cursory examination of this area of association

rule mining; interested readers are invited to refer to Goethals (2003) for a more detailed

review of these and related algorithms.

2.4.2 Frequent Pattern Growth

The Apriori and Apriori-inspired algorithms in Section 2.4.1 are breadth-first algo-

rithms that use stepwise mining to find the complete set of frequent associations of

length k prior to the mining of length k + 1 associations. In contrast, the FP-Growth
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Algorithm 2.2: FP-Tree Construction
Input: Transaction Database DB, support threshold α

Output: FP-Tree root

Method:

// First Pass

Count the frequency of single items in DB to build the set of frequent items F such that
support (Fj) ≥ α (1 ≤ j ≤ |F |);

// Second Pass

Create the root node root;
For each transaction Ti ∈ DB do

A ← transaction items such that Aj ∈ Ti, Aj ∈ F (1 ≤ j ≤ |A|) ordered by descending
frequency;
recursively insert the nodes A onto root;

end

return root

algorithm proposed by Han et al. (2000, 2004) employs depth-first search to mine Fre-

quent Pattern Trees (FP-Trees), a tree structure representation of transactional data

sets. Each node within the tree carries a codebook entry mapping to an item descrip-

tor, a frequency count, links to both its parent node and any children nodes, and a link

to the next node of the same codebook ID in the tree. A header table of descending

frequency ordered items points to the first occurrence of each item node in the tree.

Transaction items are placed into the tree in descending frequency order to produce a

compressed representation of the original database transactions. The frequent items in

an arbitrary transaction can be retrieved by traversing the tree from the root down to

a leaf node.

Two passes over a database are required to construct the tree, the method being given

in Algorithm 2.2. The first pass returns the frequency counts of all items found in DB.

The frequent items are sorted by descending frequency and are used to create the tree

header table. Items that do not meet the minimum support threshold α are discarded.

A second pass over DB sees the items in each transaction being sorted into descending

frequency and recursively inserted into the tree. An example FP-Tree, constructed

from the database in Table 2.1, is provided in Figure 2.6.

The resulting tree structure is mined using the FP-Growth algorithm, a recursive divide

and conquer approach that avoids candidate generation. The algorithm used, presented

as Algorithm 2.3, works as follows. At each recursive step, FP-Growth will build a

conditional FP-Tree Tc for each item ai in the item header table given the conditional

prefix paths of ai in the current tree T . The conditional prefix paths are those nodes in

T that must be traversed from the root to reach each instance of ai in the tree. Having

found the conditional prefix paths, the newly created tree Tc is populated using the
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Table 2.1: An example database showing the raw and frequency ordered items
in each transaction.

Trans. ID Raw Items Ordered Items

100 A C E A C E
200 A B C A C B
300 B D F D B F
400 A C D A C D
500 A C D F A C D F

Key

root
Header Table

Node Link
Tree link

A:4

C:4

D:3

B:2

F:2

A:4

B:1

B:1

C:4

D:1

D:2 F:1

F:1

Figure 2.6: The FP-Tree for the example database in Table 2.1 with minimum
support α = 2. Colon delineated numbers depict the node frequency count.
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Algorithm 2.3: FP-Growth
Input: FP-Tree T , mining support threshold α

Output: Set of frequent rules
Method:

minedRules ← ∅;
For each item ai in header table of T from least to most frequent such that
support (ai) ≥ α do

Find the conditional prefix path for ai and build the conditional FP-Tree Tc;
If Tc contains a single path P then

Tc ← Tc with P removed;
singlePathRules ← all combinations of intratransaction nodes in P ;

end

returnedRules ← call FP-Growth (Tc, α);
ruleSet ← returnedRules ∪ singlePathRules;
For each rule R ∈ ruleSet do

add ai to R with support (R) = min (support (R) , support (ai));
end

add ai to ruleSet with support = frequency of ai in T ;
minedRules ← minedRules ∪ ruleSet;

end

Return minedRules

tree construction method in Algorithm 2.2. For example, the prefix nodes of item B

in the FP-Tree in Figure 2.6 are 〈A C:1〉 and 〈D:1〉 and produce the conditional tree

Tc|B seen in Figure 2.7, the colon notation indicating the frequency count of each prefix

path. Itemsets are generated by taking the dot product of the current item ai and any

rules returned by a recursive call to FP-Growth on the conditional tree Tc|ai. Recursion

ends when no more frequent items exist in the header table of Tc.

FP-Growth has been shown to be computationally more efficient than the Apriori and

TreeProjection (Agarwal et al., 2001) algorithms, especially on dense data sets where

the sharing of item nodes allows for a highly compact representation of the data. The

bushy nature of the tree when applied to sparse data sets, however, offers opportunity

for improvement. This was demonstrated by Pei et al. (2001) in their proposed H-

struct hyper-structure, a two dimensional array of interlinked items, and H-mine, an

algorithm for mining the structure. The H-mine algorithm uses the H-struct for mining

until dense data is encountered; at this stage it will dynamically switch to FP-Growth.

Liu et al. (2003, 2004) investigated the performance of the Ascending Frequency Or-

dered Prefix-Tree (AFOPT), a variation of the FP-Tree in which items are ordered by

their ascending frequency. It was shown that reversing the item ordering allowed the

cost of tree traversal and conditional subtree construction to be greatly reduced; the

order of nodes within the AFOPT ensuring that the next conditional subtree to be

mined is prepared with minimal overhead.
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Key

root
Header Table

Node Link
Tree link

A:1

C:1

D:1

A:1

C:1

D:1

Figure 2.7: The conditional FP-Tree Tc|B. Colon delineated numbers depict
the node frequency count.

Other notable works relevant to this area is Eclat by Zaki et al. (1997) and Zaki

(2000), the first depth-first association rule mining algorithm, and OpportuneProject

by Liu et al. (2002), a pattern growth algorithm that dynamically selects between tree

and array representations of the transactional data to optimise mining efficiency.

2.5 Intertransaction Association Rules

Intertransaction Association Rule (IAR) mining (Lu et al., 1998, 2000) extends the

discovery of association rules discussed in Section 2.4 to include relationships that span

transactions in one or more domain specific dimensions. The dimensional attribute

may be, for example, temporal in the prediction of stock market movements or spatial

in a GIS application.

As for the intratransaction association rule case, the set of all items

I =
{

a1a2 . . . ai . . . aM
}

are said to occur in a database DB = 〈T1T2 . . . TN 〉 of trans-

actions Ti (1 ≤ i ≤ N) such that Ti (x) ∈ I ∀ items x in Ti. At any transaction Ti the

items form the set STi
=
{

ai
Ti
. . . ak

Ti

}

. For the case of a single intertransaction di-

mension attribute, an intertransaction sliding window of size w transactions is passed

over the transactions in DB to extract the extended transaction items such that the

extended transaction at Ti is ETi
= {STi

, STi+1 . . . STi+w} and the set of all possible

extended transaction items is E =
{

a1
0a

2
0 . . . a

i
d . . . a

M
w

}

. The term intraitems is used to

refer to the set of items
{

a1
0 . . . a

M
0

}

. The superscript notation is dropped when the

value of an item is known. IAR mining seeks to find rules of the form X ⇒ Y with the

properties:
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X ⊆ E,Y ⊆ E (2.38)

∃a0
i ∈ X (2.39)

∃ad
i ∈ Y, d > 0 (2.40)

X ∩ Y = ∅ (2.41)

The support measure for an association rule r continues to be calculated as
|Txy|

N
where

|Txy| is the number of extended transactions containing all items in X ∪ Y and N is

the number of transactions in DB. The confidence of a rule continues to be calculated

as
|Txy|
|Tx|

where |Tx| is the number of extended transactions containing all items in X.

Table 2.2 depicts the example database from Table 2.1 with an introduced temporal

dimension. The extended transactions found when a sliding intertransaction window

of size w = 4 is applied are shown.

IAR mining is similar to frequent episode and sequential pattern mining, two dif-

ferent types of intertransaction mining. Frequent episode mining (Mannila et al.,

1995; Mannila and Toivonen, 1996; Mannila et al., 1997) seeks to find frequent par-

tial ordering of items within a sliding window but does not consider the time inter-

val relationships among those items. Sequential patterns (Agrawal and Srikant, 1995;

Srikant and Agrawal, 1996) is concerned with finding frequent sequences where the

precise ordering of items or events is important yet the temporal relationships are not

considered. These two areas contrast to IAR mining where, assuming that the inter-

transaction dimensional attribute is temporal, the associative relationship among items

is considered between time intervals but the ordering of items within the intervals is

Table 2.2: The example database from Table 2.1 with introduced transac-
tion times. The extended transaction items shown are gathered when the
transaction time is used as an intertransaction dimensional offset and a sliding
intertransaction window of size w = 4 is passed over the database.

Trans. ID Time Items Extended Items

100 1 A C E A0 C0 E0 A2 B2 C2 B3 D3 F3 A4 C4 D4

200 3 A B C A0 B0 C0 B1 D1 F1 A2 C2 D2 A4 C4 D4 F4

300 4 B D F B0 D0 F0 A1 C1 D1 A3 C3 D3 F3

400 5 A C D A0 C0 D0 A2 C2 D2 F2

500 7 A C D F A0 C0 D0 F0
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unimportant. IAR mining was selected for this work due to the interleaved nature of

human behaviour as it allows us to capture the non-sequential relationships between

observed activities while retaining some of the temporal aspect of such relationships.

Opportunity exists for sequential pattern mining to be applied when the precise order-

ing of activities is desired and when an adequate supply of training data is available.

2.5.1 E-Apriori

Intertransaction association mining was first proposed in Lu et al. (1998, 2000) with

the Apriori inspired E-Apriori and EH-Apriori algorithms. E-Apriori, like Apriori, is a

stepwise algorithm that makes numerous passes over a data set to test, in each pass,

the frequency of the k-length candidate itemsets generated from frequent (k−1)-length

associations discovered in the previous pass.

The E-Apriori algorithm is detailed in Algorithm 2.4. The count of all items in the

extended item set E is gathered in an initial pass over the data set and items not

meeting the minimum support threshold α are discarded. The set of all possible 2-

length itemsets is then generated and their support verified with a second pass over

the database. The generation-then-test phase of the algorithm nows changes, all future

passes over the data set making use of hash-trees in the generation and counting of

itemsets. The search space for candidate generation is reduced in E-Apriori by grouping

previously discovered associations into bins based on the number of intraitems contained

in the itemsets. E-Apriori assumes that items remain sorted both by their lexicographic

order and by ascending intertransaction offset. Two itemsets p ∈ Lk−1 and q ∈ Lk−1

may be joined to create a new itemset when px = qx (1 ≤ x ≤ k − 2) and pk−1 < qk−1,

the comparison of two items ai
d < a

j
t being true iff (d < t) ∨

(

(d = t) ∧
(

ai < aj
))

.

The EH-Apriori algorithm introduced alongside E-Apriori makes additional use of hash-

ing to reduce the overhead of counting itemsets on the second pass.

2.5.2 First Intra Then Inter

The First Intra Then Inter (FITI) algorithm was introduced by Tung et al. (1999, 2003)

shortly after the work of Lu et al. (1998). FITI is an improved candidate generation

algorithm that first finds the complete set of intratransaction associations in order to

transform the data set into lookup structures that aid the subsequent mining of inter-

transaction itemsets. The advantage of FITI lies in its ability to discard unnecessary

data early on in the mining process and to use the discovered intratransactions to more
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Algorithm 2.4: E-Apriori
Input: Extended transaction Database DB, minimum support threshold α, sliding intertransaction

window size w

Output: Complete set of frequent intertransaction associations L = {L1, L2, . . . , Lk, . . . , LK}

Method:

// Initial pass over DB

C1 ← frequency of all single extended items in DB;
L1 ← {c ∈ C1| support (c) ≥ α};

// k = 2

C2 ←
˘

a1
0, a2

x

¯

|
`

a1
0 ∈ L1

´

∧
`

a2
x ∈ L1

´

∧
`

(x 6= 0) ∨
`

x = 0 ∧ a1
0 < a2

0

´´

;
For each extended transaction Ti ∈ DB do

For each candidate c ∈ C2 do

If c ∈ Ti then
c.count++;

end

end

end

L2 ← {c ∈ C2| support (c) ≥ α};

// All k ≥ 3 passes

k = 3;
While Lk−1 6= ∅ do

// Generate the candidate itemsets

Ck ← ∅;
For n← 1 to k − 1 do

Gn ← itemsets in Lk−1 with n intraitems;
For i← 1 to |Gn| − 1 do

p← Gn (i);
For j ← i + 1 to |Gn| do

q ← Gn (j);
If px = qx (1 ≤ x ≤ k − 2) and
[(pk−1.offset < qk−1.offset) or ((pk−1.offset = qk−1.offset) and (pk−1.item < qk−1.item))]
then

Ck ← Ck ∪ (p ∪ q);
end

end

end

end

// Prune unsupported candidates

For each c ∈ Ck do
prune c from Ck unless s ∈ Lk−1 ∀ (k − 1)-length subsets s of Ck;

end

// Find the frequency of the candidate itemsets

For n← 1 to k do
Gn ← itemsets in Ck with n intraitems;
For each extended transaction Ti ∈ DB do

// Query hash-tree

G′

n ← {c ∈ Gn| intraitems (c) ∈ Ti};
For each c ∈ G′

n do

If c ∈ Ti then
c.count++;

end

end

end

end

Lk ← {c ∈ Ck| support (c) ≥ α};
k++;

end
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efficiently guide the generation of intertransaction candidates.

FITI is algorithmically detailed as Algorithm 2.5 and works as follows. First, the com-

plete set of intratransaction associations are mined using any available intratransaction

itemset mining algorithm. The frequent itemsets are then used to construct the lookup

links of the Frequent Itemset Linked Table (FILT) used in FITI. The lookup link struc-

ture, depicted in Figure 2.8(a), is a lookup table of unique itemset IDs that point to

nodes representing discovered intratransaction itemsets. Generator and extension links

between the itemset nodes are constructed next; the generator links mapping the re-

lationships between (k − 1)-length itemsets and the k-length itemsets that result from

their joining; the extension links showing which two (k − 1)-length itemsets can be

joined to generate any given k-length itemset. Example generator and extension links

for the sample link lookup structure in Figure 2.8(a) are shown in Figure 2.8(b). Two

more sets of links showing itemset subset and descendant relationships are stored in the

FILT. The subset link structure, depicted in Figure 2.8(c), links k-length itemset nodes

to their (k − 1)-length subsets while descendant links such at those in Figure 2.8(d)

show which (k + 1)-length itemsets nodes contain a given k-length itemset as a prefix.

Next, the FILT is used to transform the database into Frequent Itemset Tables (FITs)

to aid mining. Itemset lookup link IDs are used to encode the frequent intratransaction

itemsets in the original database into a set of FITs F = {F1, F2, . . . Fk, . . . FmaxK} such

that a table Fk stores the occurrence of all k-length intratransaction itemsets in DB

and the number of required tables maxK is the maximum length of the discovered

intratransaction itemsets. Table 2.3 demonstrates how the database in Table 2.2 can

be encoded as three FITs using the lookup link structure in Figure 2.8(a) when a

minimum support threshold of α = 3 is applied.

Intertransaction itemsets are encoded as a sequence of intratransaction sub-windows

I = [I0, I1, . . . Ip, . . . Iw] such that each sub-window Ip contains a single intratransaction

itemset ID from the FILT lookup links or Ip = 0. The encoded itemset I = [1, 0, 4, 0, 7],

for example, maps to the itemset A0 A2 C2 A4 C4 D4 using the lookup links in Fig-

ure 2.8(a).

The stepwise mining phase of FITI now begins with the generation of all possible 2-

length intertransaction itemset candidates, the frequency of which are stored in a hash

table to reduce memory usage. For all (k ≥ 3)-length intertransaction itemsets, FITI

adopts the familiar generate-prune-count process used in algorithms such as E-Apriori.

Known frequent itemsets of length k − 1 are inserted into a hash table during the

candidate generation procedure such that two itemsets I and J are only tested for a
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Algorithm 2.5: FITI
Input: Extended transaction Database DB, minimum support threshold α, sliding

intertransaction window size w, set of frequent intratransaction itemsets L′

Output: Complete set of frequent intertransaction associations L = {L1, L2, . . . , Lk, . . . , LK}

Method:

L1 ← L′

1;
F ′ ← generate the FILT structure from L′;
F ← database transformation using F ′;
// Itemsets are stored in FIT representation from here on

// Generate and count candidates for k = 2. Counts for items in C2 are stored

in a hash table

C2 ←
˘

a1
0, a

2
x

¯

|
`

a1
0 ∈ L′

1

´

∧
`

a2
x ∈ L′

1

´

∧
`

(x 6= 0) ∨
`

x = 0 ∧ a1
0 < a2

0

´´

;
L2 ← {c ∈ C2| support (c) ≥ α};

// Levelwise mining for k ≥ 3
k = 3;
While Lk−1 6= ∅ do

// Candidate itemset generation

Ck ← call FITI-Gen(F ′, Lk−1, k, w) in Algorithm 2.6;

// Prune unsupported candidates

For each c ∈ Ck do
prune c from Ck unless s ∈ Lk−1 ∀ (k − 1)-length subsets s of Ck;

end

// Count

T ← create counting tree;
For each c ∈ Ck do

insert c into T ;
end

For each transaction f ∈ F do
increment count of itemsets in T ;

end

Lk ← {c ∈ Ck| support (c) ≥ α};
end
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Algorithm 2.6: FITI-Gen

Input: FILT structure F ′, set of frequent candidates Lk−1, step k, intertransaction sliding
window size w

Output: Set of candidates Ck

Method:
Ck ← ∅;
H ← create new hash table;
For each I ∈ Lk−1 do

For d ∈ 0 to w do

If I (d) 6= 0 then

I ′ ← I ;
I ′ (d)← 0;
indx ← hash of I ′;
If H (indx) 6= ∅ then

For each J ∈ H (indx) do

// Intra-window join

If (∃p, Ip and Jp are generators of a Kp) ∧ (∀q, Iq = Jq (q 6= p)) ∧
[((length (Ip) > 1) ∧ (length (Jp) > 1) ∧ (∀r, Ir = 0 ∧ Jr = 0 (r > p))) ∨
((length (Ip) = 1) ∧ (length (Jp) = 1) ∧ (∀r, length (Ir) ≤ 1 ∧ length (Jr) ≤ 1 (r > p)))]
then

Ck ← Ck ∪ (I1, . . . Ip−1, Kp, Ip+1, . . . Ik);
end

// Cross-window join

If k > w then

If (∃p, Ip 6= 0 ∧ Jp = 0) ∧ (∃q, Iq = 0 ∧ Jq 6= 0 (p 6= q)) ∧
(∀r, Ir = Jr (r 6= p, r 6= q)) ∧ (∀r, Ir = 0 (r > p)) ∧
(∀r, Jr = 0 (r > q)) ∧ (∀r, length (Ir) ≤ 1 ∧ length (Jr) ≤ 1) then

Ck ← Ck ∪ (I1, . . . Ip, . . . , Jp, . . . Ik);
end

end

end

end

H (indx)← H (indx) ∪ I ;
end

end

end

Table 2.3: FIT representation of the example database in Table 2.2 created
with a minimum support threshold of α = 3 and encoded using the lookup link
structure in Figure 2.8(a).

Trans. ID Time Items Items |α F1 F2 F3

100 1 A C E A C 1, 2 4
200 3 A B C A C 1, 2 4
300 4 B D F D 3
400 5 A C D A C D 1, 2, 3 4, 5, 6 7
500 7 A C D F A C D 1, 2, 3 4, 5, 6 7
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Figure 2.8: The FILT data structure of the (a) item links, (b) generator and
extension links (c) subset links and (d) descendant links used in FITI.
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possible join if they are assigned to the same bin. Two types of itemset joins may be

made in the generation of a new candidate itemset. The first, an intra-window join

between two itemsets I and J is possible and will produce a new candidate of the form

{I1, . . . Ip−1,Kp, Ip+1, . . . Ik} when the following conditions are true:

∃p, Ip and Jp are generators of Kp (2.42)

∀q, Iq = Jq (q 6= p) (2.43)

[(length (Ip) > 1) ∧ (length (Jp) > 1) ∧ (∀r, Ir = 0 ∧ Jr = 0 (r > p))] ∨

[(length (Ip) = 1) ∧ (length (Jp) = 1) ∧ (∀r, length (Ir) ≤ 1 ∧ length (Jr) ≤ 1 (r > p))] . (2.44)

A cross-window join between itemsets I and J is possible and will produce a new

candidate of the form [I1, . . . Ip, . . . , Jp, . . . Ik] when the following conditions are true:

∃p, Ip 6= 0 ∧ Jp = 0 (2.45)

∃q, Iq = 0 ∧ Jq 6= 0 (p 6= q) (2.46)

∀r, Ir = Jr (r 6= p, r 6= q) (2.47)

∀r, Ir = 0 (r > p) (2.48)

∀r, Jr = 0 (r > q) (2.49)

∀r, length (Ir) ≤ 1 ∧ length (Jr) ≤ 1. (2.50)

The frequency of the candidate itemsets is counted using a tree of depth w, each level

l representing the encoded itemsets of the candidate itemsets in the lth sub-window.

The count of itemsets within the tree are incremented whenever a leaf node is reached

via a traversal down from the root using the itemsets present in the FITs. Itemsets

found to be unsupported are pruned from the tree.

Prior to counting FITI will query the tree of frequent (k− 1)-length itemsets from the

previous pass on the frequency of the (k− 1)-length subsets of each candidate itemset.

Candidates found to contain unsupported subsets will be discarded.
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2.5.3 Frequent Pattern Growth

The FP-Tree has previously been applied to a constrained case of intertransaction

association mining in Berberidis et al. (2004) for the prediction of rare events. Here, a

transactional database containing occurrences of specific rare events was mined to find

frequent intertransaction associations that could be used to predict and avoid these

events in the future. Items in the database were encoded using a codebook whose

alphabet mapped to all possible combinations of events and intertransaction offsets

in the database. The intertransaction relationships were restored using the codebook

following mining. This technique requires an FP-Tree be conditioned on each rare event

that is to be mined on and can not be efficiently applied to the general IAR mining

problem.

2.6 Visual Association Rule Exploration

Visual data mining tools for association rule exploration aim to provide users with a

convenient way by which to navigate through large sets of discovered associations and

the relationships they entail. Ideally, such tools will allow users to both obtain summary

information about the results being visualised and retain the ability to drill down to

specific rules of interest. This section will focus on previous work in visual data mining

concentrating on the problem of understanding association rules; interested readers

may wish to refer to Ferreira de Oliveira and Levkowitz (2003) for a wider survey of

research into the area of visual data mining.

Two dimensional matrices showing the one-to-one relationship of rules was one of the

first techniques used to visualise associations. The antecedent and consequent of the

rules were used to label the rows and the columns of the matrix while the support

and confidence of the rules were visually represented through icons on the grid. Such

displays are limited in the complexity of the associations they are able to represent and

are prone to occlusion when visualised in three dimensions. Commercial tools such as

MineSet (Brunk et al., 1997) and Quest (Agrawal et al., 1996) were the first to make

use of this method.

A more versatile matrix representation that shows the relationships between items and

itemsets was introduced in Wong et al. (1999). The matrix columns were used to rep-

resent associations with rows representing the individual items. Item membership in

the rules was depicted by binary coloured bricks placed onto the grid, the brick colour
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distinguishing between the rules antecedent and consequent items. The grid was dis-

played in three dimensions with the support and confidence of the associations charted

alongside the x-axis. The two dimensional matrix theme was again used in Ong et al.

(2002). Here, associations of the same items were grouped into cells and placed onto

the grid in order of descending support and descending confidence. Interesting changes

in the rules were marked on the grid and on an accompanying hierarchical view of the

associations.

The use of mosaic plots for association rule analysis was proposed by Hofmann et al.

(2000). Mosaic plots are graphical representations of contingency tables that show

the frequency of combinations of items in a data set. The frequency of associations is

graphically depicted such that the relative size of each table cell, or tile, in the mosaic

plot reflects the relative frequency of the items within the association. The use of dou-

ble decker plots, a variation of mosaic plots that show the conditional probabilities of

an association rule’s consequent given its antecedent items, was also introduced. The

appeal of double decker plots lies in their ability to visually highlight those combina-

tions of antecedent items that provide the strongest indication that a particular rule’s

consequent will apply.

A richer display system was discussed in Blanchard et al. (2003). Here associations

are sorted into subsets of similar rules and displayed in a virtual landscape that users

navigate. The landscape shows a field that is overlooked at either end by blocks of

grandstand seating. Avatar representations of the rules, constructed from cones upon

which spheres are placed, are seated according to their similarity to the current rule

subset, the dissimilar rules being delegated to “cheaper” seats at the rear. The height

of an avatar’s cone represents the confidence of the association it represents while the

size of the sphere visually indicates its support. Selecting a rule moves the visualisation

to another field, or rule subset. One block of seating is populated with specialisations

of the currently selected rule while the other is populated with generalisations, giving

users a means of drilling through the discovered rules.

Bruzzese and Davino (2003) proposed a visualisation technique using parallel coordi-

nates on a two dimensional plane. Antecedent items of rules sharing a common conse-

quent are evenly distributed on the horizontal axis and a measure of the rules’ efficacy

with or without the presence of each antecedent item is displayed on the vertical axis as

a value in the range [1,−1]. Redundant and non-redundant itemsets alike are plotted,

the utility measure of an item not present in a redundant rule being set to −1.

Parallel coordinates were recently used by Yang (2005) to visualise the many-to-many
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relationships of association rules. In this work, items are placed on a vertical axis

which is then duplicated multiple times and evenly distributed along the horizontal

axis. Rules and itemsets are plotted by drawing Bézier curves through the items on the

vertical axes that make up a given rule, the maximum rule length defining the number

of vertical axes that are required. To avoid clutter, only the non-redundant rules are

displayed and item taxonomies can be defined for a generalised representation of the

associations. A taxonomic node can be selected to expand or collapse it, resulting in

an interactive hierarchical representation of the associations.

2.7 Review Summary

This chapter has reviewed work pertinent to this thesis from the graphical model and

data mining literature. The Hidden Markov Model (HMM) and its Explicit State

Duration HMM and Hierarchical HMM variants were introduced with a survey of re-

lated works on activity and gesture recognition. The classic data mining problem of

association rule mining was then introduced with an examination of the Apriori and

FP-Growth algorithms and their related works. The relatively modern problem of in-

tertransaction association mining was then described along with a detailed overview

of the two current intertransaction mining algorithms: E-Apriori and First Intra Then

Inter. Finally, the chapter concluded with a description of several techniques concerned

with the visual display and exploration of discovered association rules.
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Chapter 3

Detecting Human Behaviour

Abnormality via Stochastic

Models

This chapter investigates the use of the Hidden Markov Model (HMM) and its Hier-

archical HMM (HHMM) and Explicit State Duration HMM (ESD-HMM) variants for

the recognition of abnormality in human behaviours observed through a visual tracking

system. Stochastic models are of interest in such an application due to their ability

to cope with noise produced both by the underlying tracking system and from varia-

tions in how a subject may carry out their daily activities. The use of such models is

also interesting from a philosophical perspective; the hidden state layers of the models

can be said to function as a representation of a person’s decision making process, the

probabilistic structure of the hidden states being inferred from actions observed as a

result of the decision making process (Pentland and Liu, 1995). Although the context

of behaviour recognition in this thesis is primarily concerned with identifying deviations

from expected behaviour, the use of the models as classifiers of normal behaviour is not

overlooked.

An examination into how the Hierarchical HMM (HHMM) may be applied to learning

and recognising human activity sequences is given in Section 3.1. The focus of this first

work is to investigate the HHMM’s ability to capture and represent simple activity

sequences that are representative of a person’s expected behaviour. The HHMM was

chosen because its structure is able to more naturally capture the hierarchy present in

human activity than similar flat models whilst its statistical nature offers the ability to
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deal with noisy and missing data. Furthermore, the hierarchical nature of the HHMM

allows for model reuse and faster learning through independent submodel generation

(Theocharous, 2002).

The importance of incorporating duration in a model of human behaviour will be

investigated in Section 3.2. Here, the Hidden Semi-Markov Model (HSMM), or Explicit

State Duration HMM (ESD-HMM ), is applied to the task of sequence classification and

to the problem of detecting abnormality due to a subject spending either an unusually

long or unusually short period of time at an otherwise normal activity. A modification to

the standard ESD-HMM, that assumes that the activity sequence has been augmented

with additional information from which the state transition times can be derived, will

be examined in Section 3.3.

Finally, the ability of the Observed Time Indices (OTI) ESD-HMM to classify unseen

sequences and to detect abnormality from video footage gathered from a real world

smart home will be investigated in Section 3.4.

3.1 Hierarchical HMM

The hierarchical hidden Markov model (HHMM) (Fine et al., 1998) is a multi-level

stochastic finite state machine that offers greater descriptive powers than similar flat

models. The HHMM is recursive, hidden states are themselves HHMMs down to a

final HMM (Rabiner, 1989) level that is responsible for the generation of observations.

The recursive and autonomous nature of the HHMM allows for the construction of

complex high level models that can describe the signal under observation in a way that

is more natural than traditional models while affording flexible parameter estimation

through the reuse of separately trained models. Rapid training of increasingly complex

models can thus be accomplished, especially in multi-processor systems which are able

to parallelize the training of lower level models for reuse.

In this section, the HHMM is applied to the task of modelling and inferencing on

sequences of human activity as observed by a visual tracking system. Section 3.1.1

defines the experimentation methodology that is used in Section 3.1.2 to explore the

application of the HHMM to the task of modelling human behaviours. Classification

results demonstrating the application of the model to the recognition of previously

unseen sequences of normal behaviour are presented in Section 3.1.3.

The original HHMM re-estimation formula in Section 2.3 was modified to accommo-
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date multiple observation sequences. The set of N observation sequences is defined as

O = [O1, O2, . . . , ON ] and a single observation On is referred to as on
t . As the sequence

strings are independent, the likelihood of all observation sequences being produced by

the model is

Pr (O|λ) =
N
∏

n=1

Pr (On|λ) . (3.1)

The short hand notation Pn = Pr (On|λ) will be used to reduce the notation complexity.

The new vertical and horizontal transition probability estimates are defined as a nor-

malised sum of the individually weighted observation sequences as follows:

π̂q1

(q2i ) =

N
∑

n=1

1

Pn

χ
(

On, 1, q22 , q
1
)

N
∑

n=1

1

Pn

|q1
i |
∑

i=1

χ
(

On, 1, q22 , q
1
)

(3.2)

π̂qd−1

(qd
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N
∑
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1
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T
∑
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∑
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1
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(3.4)
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(3.5)

3.1.1 Experimentation Methodology

A visual tracker was implemented to extract observation sequences from video record-

ings of a person performing various kitchen and a lounge room related activities in a

laboratory environment. The tracker employs a Gaussian background model for fore-

ground segmentation as described in Stauffer and Grimson (2000) and a Kalman filter

to track objects across frames (Kalman, 1960). The position of the subject’s feet in

the scene, as approximated by taking the centre of the bottom of the tracker supplied

bounding box, was used to calculate the proximity of the person to defined areas of

interest in the room: the door, fridge, food preparation area, sink and the stove in the

kitchen environment and the door, dinning table, television, bookcase and couch in the

lounge room environment. Discrete observations mapping to these areas were recorded

if the subject was in close proximity else an observation mapping to “undefined” was

logged.

Four simplistic styles of dinner preparation and five typical lounge room activities were

recorded at 25fps, each over a period of 60 to 70 seconds. The tracker extracted an

observation sequence for each of the recordings by sampling the person’s location every

25 frames.

The first cooking style, shown in Figure 3.1(a), involves spending some time preparing

the food and rummaging through the fridge before the meal is cooked. The second

cooking style, depicted in Figure 3.1(b), involves washing dishes prior to cooking on

the stove. The third cooking style is shown in Figure 3.1(c). Here the person walks to

the sink to wash the dishes, spends some time at the food preparation area and at the

fridge before finally cooking the meal. The last cooking style in Figure 3.1(d) sees the

subject transitioning between each area of interest in a round robin fashion, starting

and ending at the stove, before leaving the room.
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Figure 3.1: Layout of the kitchen showing the approximate track and elapsed
time t in seconds for the (a) “food preparation first,” (b) “washing dishes first,”
(c) “washing dishes and preparing the food” and the (d) “round robin” meal
preparation sequences. Figure (a) and Figure (b) c© 2003 IEEE. Reprinted,
with permission, from Proceedings of the First IEEE International Conference
on Pervasive Computing and Communications.
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(a) (b)

(c) (d)

(e)

Figure 3.2: Layout of the lounge room showing the approximate track and
elapsed time t in seconds for the (a) “watch television,” (b) “read a book on
the couch,” (c) “eat dinner,” (d) “eat dinner while watching television” and the
(e) “there is nothing good on TV, read a book instead” lounge room activity
sequences.
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The lounge room sequences similarly feature transitions between areas of interest that

aim to be representative of typical lounge room activities. The first, shown in Fig-

ure 3.2(a), sees the subject enter the room, turn on the television and sit on the couch

for half a minute before leaving the room after visiting the television. Figure 3.2(b)

depicts an activity of reading on the couch. Here the subject sits on the couch for half

a minute after spending a few seconds selecting a book from the bookcase. The sub-

ject returns the book to the bookcase before exiting the room. In the third sequence,

Figure 3.2(c), the subject enters the room and heads immediately towards the dinning

room table. This sequence aims to mimic a basic eating activity with the subject leav-

ing the room immediately afterward. A similar sequence is acted out in Figure 3.2(d);

the subject eats dinner after first walking to the television set. Finally, Figure 3.2(e)

depicts a hybrid lounge room sequence in which the subject turns on the television and

sits down on the couch. Finding nothing of interest to watch, the subject returns to the

television to switch it off before walking to the bookcase to select a book. The subject

spends a moment reading on the couch before returning the book to the bookcase and

vacating the room.

3.1.2 Modelling Human Behaviour

In this first experiment, a separate model for each of the cooking and lounge room

activities is trained using a three layer topology. A total of four cooking and five

lounge room models were built from the dataset of 126 training sequences, 14 per

model, consisting of 56 cooking sequences and 70 lounge room sequences. The topology

features all the production states at the lowest layer. Three internal states on the

second level govern the vertical transitions to, and horizontal transitions among, the

production nodes. Finally, the root node on the top level regulates the activation of,

and horizontal transitions among, the second level internal states. The states are fully

connected at all levels of the hierarchy.

The trained models are depicted in Figures 3.3–3.11. The thickness and darkness of

the arrows and lines visually depict the relative transition likelihoods of the states such

that darker and thicker lines indicate a higher probability. Insignificant state transition

probabilities, typically those less than 2%, are not shown in order to improve clarity.

The complete state transition and emission likelihoods of the trained models from the

figures were derived are provided in Appendix A.
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Figure 3.3: The trained model for the “food preparation first” kitchen style.
Darker arrows indicate stronger state dependence and a higher transitional like-
lihood among the production (P), internal (I) and end (E) states. Insignificant
transitions have been omitted for clarity.

Kitchen Activity

Examining the model in Figure 3.3, we notice the production states closely associate

their calling parent states with clearly definable activity regions on the kitchen activ-

ity sequence maps. For example, the production nodes on the leftmost subtree only

emit the Near Stove and Undefined labels. Given the context, we can associate the

Undefined label with a person going to and from the stove area, as a person acting out

the first style needs to first traverse the middle of the room and in doing so will not be

in close proximity to the predefined areas. We hence label the internal parent state in

Figure 3.3 as “Cooking.”

The production state children of the second internal state primarily emit Near Fridge

and Near Food Prep observations. The transition structure among the production

nodes suggests a strong dependence between these two observations which closely

corresponds to the “fridge then food preparation then fridge then food preparation”

loop present in the training sequences. A single node responsible for the emission of

Undefined observations exists to accommodate occasions when the tracker may mo-

mentarily lose track of the subject. This submodel has hence been labeled “Fridge

& Food Prep.” Analysis of the third internal state’s children reveals that the internal

node is responsible for generating only Near Door and Near Fridge observations. As

this state is the only one vertically transitioned to by the root node and also the last

internal node to be activated prior to termination of the entire model, we assign this

internal state the label “Enter/exit.”
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Figure 3.4: The trained model for the “washing dishes first” style. Darker
arrows indicate stronger state dependence and a higher transitional likelihood
among the production (P), internal (I) and end (E) states. Insignificant tran-
sitions have been omitted for clarity.

Tracing and labeling the state transitions governed by the root node we find that the

entire dinner preparation sequence is abstracted as “Enter/exit → Fridge & Food

Prep → Cooking → Enter/Exit” and corresponds almost completely with the atomic

observations of the training data.

Similar results emerged through visual analysis of the second model in Figure 3.4.

The three internal states on the second level were assigned the labels “Wash Dishes,”

“Enter/exit” and “Cooking” for the observations emitted by their respective produc-

tion sub-states. Again, the transitional structure of the internal states strongly portrays

the activity in the training data. The leftmost “Wash Dishes” submodel is seen to emit

“Near Fridge” and “Undefined” observations as the subject passes in close proximity

to the fridge on the way to the sink. “Near Sink” observations are then produced prior

to the termination of this submodel. A transition to the “Cooking” internal state re-

sponsible for the production of “Near Stove” observations is then made. “Undefined”

observations are also emitted here to accommodate the subject crossing the room in

order to reach the stove. The entire model begins and ends via a transition to the

second submodel labeled “Enter/Exit.”

The state transition probabilities of the “washing dishes and preparing the food” model

in Figure 3.5 also show a clearly defined structure. The leftmost internal state is the first

state to be activated by a vertical transition down from the root node. The observation

probabilities and the horizontal transition structure of this state’s production node

children suggest that they are responsible for emission of the “Near Door,” “Near

Fridge” and “Undefined” observations that are seen when the person enters the room
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Figure 3.5: The trained model for the “washing dishes and preparing the
food” kitchen style. Darker arrows indicate stronger state dependence and a
higher transitional likelihood among the production (P), internal (I) and end
(E) states. Insignificant transitions have been omitted for clarity.

and walks towards the kitchen sink. The “Near Fridge” observations are emitted as

the subject is at times considered to be in close proximity to the fridge as they pass it

by when entering the room. The production nodes are now likely to produce a series

of “Near Sink” observations prior to making a horizontal transition to the end state.

Alternatively, the production nodes may make an early transition to the end state

following emission of the “Undefined” observations. The first internal state can hence

be assigned the label “Enter/exit and washes dishes” given that this is the only

internal state that is capable of terminating the execution of the model. The remaining

two internal nodes and their production node children are seen to map to the “Food

prep” and “Cooking” segments of the activity sequence.

The trained HHMM for the final kitchen style is shown in Figure 3.6. Here the model is

seen to make a vertical transition down to the rightmost internal state. This state will,

in turn, transition down to its production node children whose emission probabilities

and transition structure maps to the “Near Door,” “Undefined” and “Near Stove”

observations that are seen when the subject enters and leaves the room via the stove.

The third internal state can hence be labeled “Enter/exit via stove” given that this

is the only internal state likely to make a horizontal transition to the final end state.

The second internal state is the next node that is likely to be visited by the model.

This state has been labeled “Food prep” in Figure 3.6 as the observations produced

by this state’s production node children follow the “Near Fridge,” “Near Food Prep”

and “Near Sink” activity sequence as the subject sequentially moves between these

areas in the room.
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Figure 3.6: The trained model for the “round robin” kitchen style. Darker
arrows indicate stronger state dependence and a higher transitional likelihood
among the production (P), internal (I) and end (E) states. Insignificant tran-
sitions have been omitted for clarity.

The “Near Stove” observations mapping to the act of cooking in the sequence are

emitted by the production node children of the leftmost internal state. Termination of

this internal state will result in a horizontal transition back to the “Enter/exit via

stove” internal state as the subject leaves the room.

Lounge Room Activity

The trained model for the “watch television” lounge style is shown in Figure 3.7. Here

the second internal state has been assigned the label “Enter” given that it is the first

internal state to be activated, its production node children are seen to be responsible

solely for the generation of “Near Door” observations and the state is unable to make

a horizontal transition to the end state. A horizontal transition will, instead, activate

the leftmost internal state whose children nodes are seen to emit both “Undefined”

and “Near Door” observations. These emission probabilities, combined with the tran-

sitional structure of the nodes, suggests that the leftmost internal state governs the

production of sequence segments corresponding to both walking across and exiting the

room. This node has therefore been labeled “Walk across room/exit” in the figure.

The rightmost internal node can be said to correspond to “Watch TV.” A horizontal

transition from the “Walk across room/exit” to this node is seen to occur prior to

a horizontal transition returning to “Walk across room/exit” and the termination of

the model.

The structure of the trained model for the “read book on couch” activity sequence
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Figure 3.7: The trained model for the “watch television” lounge style. Darker
arrows indicate stronger state dependence and a higher transitional likelihood
among the production (P), internal (I) and end (E) states. Insignificant tran-
sitions have been omitted for clarity.

is shown in Figure 3.8. Well-defined state transitions exist among the internal states,

offering only a single possible state activation path at this level. The first state activated

by a vertical transition down from the root node appears to govern the production nodes

responsible for observations corresponding to the subject entering the room and walking

to the bookcase. This state has been labeled “Enter via bookcase”.

A horizontal transition to the leftmost internal state is seen to result in a vertical

transition down to a production node responsible for the emission of “Undefined”

observations that correspond to the subject not being in proximity to any area of

interest as they walk towards the couch. The remainder of the production nodes in this

subtree appear to be responsible for encoding the duration that the person spends at

the couch. This subtree has therefore been labeled “Read on couch.” Termination of

the “Read on couch” subtree now results in a horizontal transition to the rightmost

internal state. Here the production nodes will emit “Undefined,” “Near Bookcase”

and “Near Door” observations corresponding to the subject leaving the room.

The trained model for the third lounge room style, “eat dinner,” is given in Figure 3.9.

This model is seen to feature a slightly disarranged transitional structure not seen

in previous examples with the children nodes of the second and third internal state

sharing production of the “Near Bookcase” and “Near Table” observations. These

observations correspond to the subject spending time at the dinner table and coming

into close proximity to the bookcase due to noisy observations from the tracker. The

two subtrees also share a weak cyclic transitional relationship and have therefore been
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Figure 3.8: The trained model for the “read book on couch” lounge style.
Darker arrows indicate stronger state dependence and a higher transitional like-
lihood among the production (P), internal (I) and end (E) states. Insignificant
transitions have been omitted for clarity.

labeled “Eat dinner.”

The leftmost internal state continues to exhibit the “Enter/exit” structure seen previ-

ously, the subtree having learned to generate the “Near Door” and “Near Bookcase”

sequence segments corresponding to the subject walking past the bookcase when en-

tering and leaving the room.

Figure 3.10 depicts the HHMM for the “eat dinner while watching TV” lounge room

style. The subtrees in this model have once again attained a well-defined structure

in which the first, second and third internal states correspond to the “Eat dinner,”

“Enter/exit” and “Walk by TV” segments of the sequences being modelled.

The final HHMM, trained on the “there is nothing good on TV, read a book instead”

activity sequence style, is depicted in Figure 3.11. The transition structure of this model

is slightly more complicated than other trained models with the rightmost internal

state and its children production nodes corresponding to the sequence segments of

finding a book and both watching television and reading on the couch. This node has

been assigned the label “Find book/use couch” in Figure 3.11. The first and second

internal states appear to correspond to the production of observations corresponding to

the subject entering the room via the television and exiting the room via the bookcase.

These two nodes have hence been labeled “Enter via TV” and “Exit via bookcase”

respectively.
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Table 3.1: Confusion matrix for the cooking test sequences.

Prepare, Dishes, Wash, prepare, Round
cook cook cook robin

Prepare, cook 8 0 1 0

Dishes, cook 0 8 1 0

Wash, prepare, cook 0 0 9 0

Round robin 0 0 0 9

3.1.3 Classification Results

Eighty one unseen sequences were used to test the ability of the HHMM to classify

activity sequences. The cooking and lounge room models were tested only on the

cooking and lounge room sequences respectively as the person’s locality indicates, in

this particular case, the models of interest. The test sequences were designed to include

major variations of duration and, in some cases, variations in transition order between

the areas of interest.

The classification results of the cooking and the lounge room activity test sequences,

presented in the confusion matrices in Table 3.1 and Table 3.2 respectively, show rea-

sonable classification accuracy and demonstrate that variations in the order of activities

are accommodated by the model.
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Table 3.2: Confusion matrix for the lounge room test sequences.

Watch Read Dinner TV TV then
TV (couch) dinner read

Watch TV 8 0 0 0 1

Read on couch 0 8 0 0 1

Dinner 0 0 9 0 0

TV dinner 0 0 0 9 0

TV then read 0 0 0 0 9

3.1.4 Conclusion

This section has shown that the HHMM can be an effective tool for modelling and

classifying human activity observed through a visual tracking system. Examination

of the trained models revealed that the state transition structure and the emission

likelihoods are easily interpreted. This affirms that the model is capable of learning

a richer semantic structure than single layered “flat” models such as the HMM. The

ability of the HHMM to learn the higher level relationships between the submodels

responsible for production of observations is also promising as these lower level models

can be reused in the training of increasingly complex higher level models to encompass

a subject’s longer term actions and activities.

Several limiting factors were observed, however. First, the cubic complexity of the

HHMM with regards to the sequence length limits the practical application of the

model towards longer term observation sequences. Numerical underflow also remains

a problem due to a lack of scaling in implementations of the HHMM1. Finally, it

is hypothesized that duration is an important feature in models of human activity.

Incorporating duration into such models is necessary to prevent confusion between

observation sequences were the ordering of activities is similar yet differs significantly

in the duration of those activities. It is also expected to be a vital component in the

detection of anomalous behaviour due to unusual durations in activity. The lack of

explicit activity duration modelling in any stochastic model is therefore predicted to

render models such as the HMM and the HHMM inadequate in such situations. The

importance of duration shall therefore be investigated next.

1This issue has recently been resolved in Phung (2005), some time after this work was undertaken.
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3.2 Explicit State Duration HMM

State duration in the standard HMM is implied as a function of a state’s self transition

probability. Given a state i and its self transition probability aii, we can show that the

likelihood of remaining in the state for d consecutive time steps is exponential:

(aii)
d−1 · (1 − aii) . (3.6)

The implied duration model of the HMM and HHMM is expected to create situations in

which highly abnormal deviations in expected behaviour as either less than or greater

than usually observed activity duration are accommodated by the self transitions and

can hence fail to be detected. In this section, the notion that the incorporation of

duration into a model of human behaviour is necessary in order to properly recognise

and detect duration abnormality will be investigated.

3.2.1 Experimentation Methodology

A further 150 video sequences of normal activity in a kitchen scenario were recorded

using a single camera. Each sequence belongs to one of five normal classes of activity

sequences one might observe in a kitchen: preparing cereal, making toast for breakfast,

preparing or reheating dinner and cooking a bacon and eggs breakfast. The defined

areas of interest in the room were: the stove, the kitchen bench, the sink, a fridge

and the door. The discrete observations stove, bench, sink, fridge and door were

returned by the visual tracker if the subject was in close proximity else an undefined

observation was logged. The duration of the new video sequences ranged from 30 to 300

seconds with an average length of circa 90 seconds. Although a richer set of features

from multiple camera angles would be beneficial in a real world deployment, these

observations were found to be adequate for demonstrating the ideas behind this work.

Normal Activity Sequences

The five classes of normal behaviour were designed to highlight the importance of

modelling duration given the limitations of the tracking system where classes may have

the same sequence of observations but can differ in the duration spent in a location.

The first two classes, preparing cereal and making toast for breakfast, are identical

in the order that the areas of interest in the room are visited by the person under
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observation. Hence, given that the order of observations returned by the tracker are

door, fridge, bench, sink, bench, fridge, door it is only possible to distinguish

between the two classes by observing the time spent at the kitchen bench, the act of

making toast taking considerably longer than the preparation of a bowl of cereal.

Similarly, the dinner preparation and reheating classes consist of the activities door,

fridge, bench, stove, door, the classes differing only in the duration spent standing

by the stove. The fifth class is made up of the activities door, fridge, bench, sink,

bench, stove, fridge, door. It was included because it differs to the other classes in

both the activity duration and the order in which the activities are performed. The

five activity sequences were evenly distributed among the recorded video sequences.

Abnormal Activity Sequences

A further 24 sequences of abnormal behaviour were recorded. The abnormal sequences

differ from the normal only in terms of activity duration, either shorter or longer than

the durations seen in the normal classes, not in the order or type of activities seen.

Model Selection

Each normal class was modelled using a standard fully connected HMM, a left-right

HMM, a fully connected ESD-HMM and a left-right ESD-HMM. The left-right models

were chosen to investigate how constraining the state transitions would affect classifi-

cation and abnormality detection by preventing the models from treating duration as a

cyclic activity. The HMM was selected as a baseline for comparison. The models were

trained on a random sample of 60% of the normal activity sequences and tested on the

remainder. To keep the comparison fair, an optimal number of states for each model

was empirically selected based on classification accuracy.

A single Gaussian distribution was used to estimate the duration probabilities in the

ESD-HMM case, the model otherwise requiring an unrealistic amount of training data

to accurately estimate the state duration probabilities.

A comparison of the classification results for the various models will be presented next

in Section 3.2.2. Duration abnormality detection is then discussed in Section 3.2.3.

Finally, the models’ ability to function under varying degrees of duration abnormality

will be discussed in Section 3.2.4.
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3.2.2 Sequence Classification

Classification accuracy and the optimal number of states for each of the four models

are presented in Table 3.3. The HMM was found to be the weakest model for classifi-

cation. Its low score is attributed to dynamic time warping, a property which renders

it unsuitable for use as a classifier given the type of observation sequences used in

this experiment. This is also evident in its relatively poor classification of the original

training data.

Forcing the HMM to be a left-right model, that is Aij = 0 for all j < i, improves

classification accuracy with near perfect results. Although the two state left-right HMM

performed well empirically, the limited number of parameters is inadequate to properly

encode the sequences and hence discriminate between classes. Confusion between the

similar activity classes is shown in Table 3.4.

The ESD-HMM, in contrast, appears to perform well given no state transition re-

strictions, providing no room for further improvement when left-right constraints are

imposed. Explicit duration allows the model to clearly differentiate between all classes.

The confusion matrix for the explicit state duration models is presented in Table 3.5.

3.2.3 Duration Abnormality

In this experiment, unseen observation sequences are classified as either normal or

abnormal by querying each of the trained models on the likelihood of generating a

given sequence and then thresholding on the highest log-likelihood returned. The log-

likelihoods are normalised by the total length of the observation sequence so that a

global threshold may be applied regardless of sequence length. Receiver operator char-

acteristic (ROC) curves were used to investigate the suitability of each of the models

as a detector of abnormality. The observation sequences used in this experiment con-

sisted of the set of unseen normal sequences and the abnormal sequences described in

Section 3.2.1.

The ROC curves in Figure 3.12(a) and Figure 3.12(b) for the HMM and the left-right

HMM respectively suggest that neither model is able to reliably differentiate between

the normal and abnormal sequences using the thresholding approach.

The ROC curve shown in Figure 3.12(c) for the ESD-HMM displays better results with

the true positive rate increasing more rapidly than the false positive rate. The use

of explicit state duration has increased the reliability of the HMM in the detection
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Table 3.3: The optimal number of states and classification accuracy for both
the training and the test sequences for each of the four model types.

Model # States Training Testing

HMM 12 93.75% 81.43%
Left-right HMM 2 98.75% 97%

ESD-HMM 3 100% 100%
Left-right ESD-HMM 2 98.75% 100%

Table 3.4: Test sequence confusion matrix for the twelve state standard
HMM.

Cereal Toast Cook Dinner Reheat Dinner Bacon & Eggs

Cereal 11 3 0 0 0

Toast 0 14 0 0 0

Cook Dinner 0 0 10 4 0

Reheat Dinner 0 0 6 7 0

Bacon & Eggs 0 0 0 0 14

Table 3.5: Test sequence confusion matrix for both the three state ESD-HMM
and the two state left-right ESD-HMM.

Cereal Toast Cook Dinner Reheat Dinner Bacon & Eggs

Cereal 14 0 0 0 0

Toast 0 14 0 0 0

Cook Dinner 0 0 14 0 0

Reheat Dinner 0 0 0 14 0

Bacon & Eggs 0 0 0 0 14
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Figure 3.12: ROC curves for (a) the twelve state HMM, (b) the two state
left-right HMM, (c) the three state ESD-HMM and (d) the two state left-right
ESD-HMM.
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of abnormality due to the presence of unusual activity duration. The main cause of

the remaining misclassification was found to be due to the model freely transitioning

between states. The model appears to temporarily enter a state with sub-optimal

emission probabilities prior to returning to the original state so as to maximise the

state duration likelihoods over the entire length of a given sequence.

Further improvement is seen when the transition constraints of the two state left-right

ESD-HMM are imposed as evidenced by the steep ascent of the true positive rate in

Figure 3.12(d).

Analysis of the errors showed that two of the normal activity sequences had been

misclassified by the explicit state duration models because they contained a noisy ob-

servation, uncommon and not present in the training data, in the middle of a typically

long activity. The models were forced to make a transition to another state in order to

emit the rogue observation, leading to very low state duration probabilities.

3.2.4 Longer Term Duration Abnormality

This experiment aims to investigate the ability of the models to detect longer term

abnormal duration. The time spent at a primary activity, standing near the kitchen

bench, in a randomly selected test sequence from the first activity class was artificially

varied from one second to five minutes. The usual time for a subject to remain at the

kitchen bench is circa forty seconds.

The log-likelihood, normalised by the length of the observation sequence, of the modified

activity sequence being generated by each of the standard HMM, left-right HMM, ESD-

HMM and left-right ESD-HMM was plotted over the duration period and is presented

in Figure 3.13. The figure shows the normalised log-likelihood returned by the HMM

and the left-right HMM increasing with the time spent at the primary activity due to

dynamic time warping. The HMM and left-right HMM are therefore not suitable for

the detection of highly abnormal activity duration.

The ESD-HMM exhibits a similar trend. The lack of transition constraints allows the

model to temporarily enter a state with a sub-optimal emission probability in order to

maximise the state duration likelihoods.

The left-right ESD-HMM behaves correctly given the intention of the system; the model

is unable to explain away highly abnormal duration as a cyclic activity and thus identify

them as abnormal. The curve is seen to drop rapidly as the time spent at the kitchen
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Figure 3.13: The normalised log-likelihood for each of the models as the
primary activity in an observation sequence is varied from one second to five
minutes. The normal duration for the primary activity is circa 40 seconds.
Only the left-right ESD-HMM is able to detect abnormality in a timely manner.

bench increases.

3.2.5 Conclusion

This section has shown that the incorporation of duration in models of human activity

is necessary. The application of ESD-HMM to the task of detecting both abnormally

long and abnormally short activity durations in sequences of human activity was inves-

tigated. It was shown that the use of left-right state transition constraints are necessary

for the detection of higher order duration anomalies.

The optimal number of states for the left-right ESD-HMM was found to be two, mak-

ing the model unsuitable to properly encode the observation sequences. A generative

process applied to this model is hence unlikely to produce a faithful reproduction of

the original signal. The implicit nature of the state durations in the model appears to

be of issue here. A possible solution to alleviate this problem is tackled in Section 3.3

with the introduction of explicitly known state durations that are derived from an

augmented observation signal.
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3.3 Explicit State Duration HMM With Observed Time

Indices

Experimentation with the ESD-HMM in Sections 3.2.2–3.2.4 showed that explicit state

duration modelling allowed abnormality in the form of unusually short or long activity

durations to be more accurately detected than with the standard HMM. The low num-

ber of optimal states for the ESD-HMM, however, demonstrated that these models are

unlikely to faithfully reproduce the activity sequences upon which they are trained due

to the inherent smoothing performed by the models. In this section, observed state

transition time indices are introduced into the ESD-HMM to alleviate this issue by

augmenting the activity sequence signal with time indices that correspond to a subject

stepping onto pressure mats deployed around the home. Strategic placement of the

pressure mat sensors can, for example, ensure that ESD-HMM state transition times

align with the subject entering clearly defined regions or rooms in the home.

Proof of the correctness of the Observed Time Indices (OTI) ESD-HMM model is

presented via its derivation in Section 3.3.1. Results from repeat experimentation on

the data set from Section 3.2.1 are provided and discussed in Section 3.3.2 and in

Section 3.3.3.

3.3.1 Model Derivation

The notation used in the derivation of the OTI ESD-HMM is as follows. Let K be the

number of states that will be visited in the model and let T be the number of observa-

tions. The sequence of states visited for some K ≤ T is said to be Q = [q1 . . . qk . . . qK ]

with the duration spent in each of the states given as Φ = [φ1 . . . φk . . . φK ] such that
∑K

k=1 φk = T . The observed starting times of each state qk is given by the vector

τ = [τ1 . . . τk . . . τK ] which provides a mapping from k to t such that τ1 = 1 and

τK + φK − 1 = T . The observed ending times of each state qk is similarly given by

the vector τ ′ = [τ ′1 . . . τ
′
k . . . τ

′
K ] which provides a mapping from k to t such that τ ′k =

τk +φk − 1 and τ ′K = T . The observations emitted over time t are O = [o1 . . . ot . . . oT ].

The conditional dependencies of the model shown in Figure 3.14 allow the joint prob-

ability to be defined as

Pr (o1 . . . oT , q1 . . . qK , φ1 . . . φK)

= Pr (q1) Pr (φ1|q1) Pr
(

oτ1
. . . oτ ′

1

)

K
∏

k=2

Pr (qk|qk−1) Pr (φk|qk) Pr
(

oτk
. . . oτ ′

k
|qk
)

. (3.7)
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Figure 3.14: The OTI ESD-HMM rolled out over time. The states q1 . . . qK
are seen to produce the observations oτ1 . . . oτ ′

K
over k sequence segments. The

starting and ending time of each state k is given as τk and τ ′k respectively. The
duration of each state is φk such that τ ′k − τk = φk + 1.

Forwards recursion will seek:

Pr
(

o1 . . . oτ ′

k
, qk, φk

)

=
∑

qk−1

Pr
(

o1 . . . oτ ′

k
, qk, φk, qk−1

)

(3.8)

=
∑

qk−1

Pr
(

oτk
. . . oτ ′

k
|qk
)

Pr (qk|qk) Pr (φk|qk)

× Pr
(

o1 . . . oτ ′

k−1
, q1 . . . qk−1, φ1 . . . φk−1

)

. (3.9)

The forwards path variable αk (j, d) is defined as:

αk (j, d) , Pr
(

o1 . . . oτ ′

k
, qk = j, φk = d

)

(3.10)

αk (j, d) =

N
∑

i=1
i6=j

Pr
(

oτk
. . . oτ ′

k
|qk = j

)

Pr (qk = j|qk−1 = i) Pr (φk = d|qk = j)

× Pr
(

o1 . . . oτ ′

k−1
, q1 . . . qk−1, φ1 . . . φk−1

)

. (3.11)

Taking care to note that:

α1 (j, d) , Pr
(

o1 . . . oτ ′

1
, q1 = j, φ1 = d

)

(3.12)

α1 (j, d) = Pr
(

o1 . . . oτ ′

1
|q1 = j

)

Pr (q1 = j) Pr (φ1 = d|q1 = j) . (3.13)
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Backwards recursion will seek:

Pr
(

oτk+1
. . . oT , qk+1, φk+1|qk

)

=
∑

qk+1

Pr
(

oτk+1
. . . oT , qk+1, φk+1|qk

)

(3.14)

=
∑

qk+1

Pr
(

oτk+1
. . . oτ ′

k+1
|qk+1

)

Pr (qk+1|qk) Pr (φk+1|qk+1)

× Pr
(

oτk+2
. . . oT , qk+2 . . . qK , φk+2 . . . φK |qk+1

)

. (3.15)

The backwards path variable βk (i, d) is defined as:

βk (i, d) , Pr
(

oτk+1
. . . oT , qk+1 = j, φk+1 = d|qk = i

)

(3.16)

βk (i, d) =
N
∑

j=1

j 6=i

Pr
(

oτk+1
. . . oτ ′

k+1
|qk+1 = j

)

Pr (qk+1 = j|qk = i)Pr (φk+1|qk+1 = j)

× Pr
(

oτ ′

k+2
. . . oT , qk+2 . . . qK , φk+2 . . . φK |qk+1 = j

)

. (3.17)

We arbitrarily set βK (i, d) = 1 given that the calculation of βK (i, d) requires the

non-existent observation symbol at oτk+1.

Sufficient Statistics

The model will now be parameterised. Let A be the state transition matrix where

ai,j is the (i, j)th entry in the state transition matrix and represents the probability

Pr (qk = j|qk−1 = i).

Let Π be a vector holding the initial state distribution such that πi is the ith entry of

the initial state distribution and represents the probability Pr (q1 = i).

Let B be the emission likelihood distribution where bi (m) is the probability of the ith

state emitting the observation symbol Vm ∈ [v1 . . . vM ].

Let P be the state duration likelihood distribution where pi (d) is the probability of the

ith state being active for d consecutive time steps.

The parameters of the entire model are denoted with the shorthand notation λ =

(Π, A,B, P ). The identity function I () defines that I = 1 iff all arguments passed are

true.
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The joint probability of the model in Equation 3.7 can now be parameterised:

Pr (o1 . . . oT , q1 . . . qK , φ1 . . . φK)

= Pr (q1) Pr (φ1|q1) Pr (o1 . . . oτ1
|q1)

K
∏

k=2

Pr (qk|qk−1) Pr (φk|qk)

× Pr
(

oτk
. . . oτ ′

k
|qk
)

(3.18)

= πq1
pq1

(φ1)

τ1
∏

t=1

bq1
(ot)

K
∏

k=2



aqk−1,qk
pqk

(φk)

τ ′

k
∏

t=τk

bqk
(ot)



 (3.19)

= πq1
pq1

(φ1)

[

K
∏

k=2

aqk−1,qk
pqk

(φk)

]





K
∏

k=1

τ ′

k
∏

t=τk

bqk
(ot)



 (3.20)

= log







πq1
pq1

(φ1)
K
∏

k=2

aqk−1,qk
pqk

(φk)
K
∏

k=1

τ ′

k
∏

t=τk

bqk
(ot)







(3.21)

= log

{

N
∏

i=1

π
I(q1=i)
i

}

+ log















K
∏

k=2

N
∏

i=1

N
∏

j=1

j 6=i

a
I(qk−1=j,qk=j)
i,j















+ log

{

K
∏

k=1

D
∏

d=1

N
∏

i=1

pi (d)
I(qk=i,φk=d)

}

+ log







K
∏

k=1

τ ′

k
∏

t=τk

M
∏

m=1

N
∏

i=1

bi (m)
I(qk=i,ot=m)







(3.22)

=

N
∑

i=1

I (q1 = i) log (πi) +

K
∑

k=2

N
∑

i=1

N
∑

j=1

j 6=i

I (qk−1 = i, qk = j) log (ai,j)

+

K
∑

k=1

D
∑

d=1

N
∑

i=1

I (qk = i, φk = d) log (pi (d))

+

K
∑

k=1

τ ′

k
∑

t=τk

M
∑

m=1

N
∑

i=1

I (qk = i, ot = m) log (bi (m)) . (3.23)
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Thus, for the fully observed case the sufficient statistics are defined as:

SS (πi) = I (q1 = i) (3.24)

SS (ai,j) =

K
∑

k=2

I (qk−1 = i, qk = j) (3.25)

SS (bi (m)) =

K
∑

k=1

τ ′

k
∑

t=τk

I (qk = i, ot = m) (3.26)

SS (pi (d)) =
K
∑

k=1

I (qk = i, φk = d) . (3.27)

Parameter Estimation For The Hidden Variable Case

Here the variables qi . . . qT are hidden while the variables o1 . . . oT and φ1 . . . φK are

observed.

Given the parameterised path variables:

α1 (j, d) = πjpj (d)

τ ′

1
∏

t=1

bj (ot) (3.28)

αk (j, d) =

N
∑

i=1
i6=j

αk−1 (i, φk−1) ai,jpj (d)

τ ′

k
∏

t=τk

bj (ot) (3.29)

βK (i, d) = 1 (3.30)

βk (i, d) =

N
∑

j=1

j 6=i

ai,jpj (d)





τ ′

k+1
∏

t=τk+1

bj (ot)



βk+1 (j, φk+2) (3.31)

The expected sufficient statistics are thus:

ESS (πi) = E [I (q1 = i) |o1 . . . oT , φ1 . . . φK ] (3.32)

= Pr (q1 = i|o1 . . . oT , φ1 . . . φK) (3.33)

= Pr
(

q1 = i|o1 . . . oτ ′

1
, oτ2

. . . oT , φ1, φ2 . . . φK

)

(3.34)

= πipi (φ1)





τ ′

1
∏

t=1

bi (ot)



β1 (i, φ2) (3.35)
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ESS (ai,j) = E

[

K
∑

k=2

I (qk−1 = i, qk = j) |o1 . . . oT , φ1 . . . φK

]

(3.36)

=

K
∑

k=2

Pr (qk−1 = i, qk = j|o1 . . . oT , φ1 . . . φK) (3.37)

=
K
∑

k=2

Pr (qk = j|qk−1 = i) Pr (o1 . . . oT , φ1 . . . φK |qk−1 = i) (3.38)

=
K
∑

k=2

Pr (qk = j|qk−1 = i)

× Pr
(

o1 . . . oτ ′

k−1
, oτk

. . . oτ ′

k
, oτk+1

. . . oT , φ1 . . . φk−1, φk, φk+1 . . . φK |qk−1 = i
)

(3.39)

=

K
∑

k=2

αk−1 (i, φk−1) ai,jpj (φk)





τ ′

k
∏

t=τk

bj (ot)



βk (j, φk+1) (3.40)

ESS (bi (m)) = E





K
∑

k=1

τ ′

k
∑

t=τk

I (qk = i, ot = m) |o1 . . . oT , φ1 . . . φK



 (3.41)

=

K
∑

k=1

τ ′

k
∑

t=τk

I (ot = m) Pr (qk = i, ot = m|o1 . . . oT , φ1 . . . φK) (3.42)

=

τ ′

1
∑

t=1

I (ot = m) Pr (q1 = i|o1 . . . oT , φ1 . . . φK) δ(ot = m)

+

K
∑

k=2

τ ′

k
∑

t=τk

I (ot = m) Pr (qk = i|o1 . . . oT , , φ1 . . . φK) (3.43)

=

τ ′

1
∑

t=1

I (ot = m)πipi (φ1)





τ ′

1
∑

t=1

bi (ot)





+
K
∑

k=2

τ ′

k
∑

t=τk

I (ot = m)αk (i, φk)βk (i, φk+1) (3.44)
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ESS (pi (d)) = E

[

K
∑

k=1

I (qk = i, φk = d) |o1 . . . oT

]

(3.45)

=

K
∑

k=1

I (φk = d) Pr (qk = i, φk = d|o1 . . . oT ) (3.46)

=
K
∑

k=1

I (φk = d) Pr (qk = i|o1 . . . oT ) Pr (φk = d|qk = i) (3.47)

=
K
∑

k=1

I (φk = d) Pr
(

qk = i|o1 . . . oτ ′

k−1
, oτk

. . . oT

)

Pr (φk = d|qk = i) (3.48)

=

K
∑

k=1

I (φk = d)αk (i, d)βk (i, φk+1) (3.49)

Finally, the re-estimation formulas are given as:

π̂i =

πipi (φ1)





τ ′

1
∑

t=1

bi (ot)



β1 (i, φ2)

N
∑

j=1

πipi (φ1)





τ ′

1
∑

t=1

bi (ot)



β1 (i, φ2)

(3.50)

âi,j =

K
∑

k=2

αk−1 (i, φk−1) ai,jpj (φk)





τ ′

k
∏

t=τk

bj (ot)



βk (j, φk+1)

N
∑

j=1

K
∑

k=2

αk−1 (i, φk−1) ai,jpj (φk)





τ ′

k
∏

t=τk

bj (ot)



βk (j, φk+1)

(3.51)

b̂i (m) =

τ ′

1
∑

t=1

I (ot = m)πipi (φ1)





τ ′

1
∑

t=1

bi (ot)



+
K
∑

k=2

τ ′

k
∑

t=τk

I (ot = m)αk (i, φk)βk (i, φk+1)

τ ′

1
∑

t=1

πipi (φ1)





τ ′

1
∑

t=1

bi (ot)



+
K
∑

k=2

τ ′

k
∑

t=τk

αk (i, φk)βk (i, φk+1)

(3.52)
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p̂i (d) =

K
∑

k=1

I (φk = d)αk (i, d)βk (i, φk+1)

N
∑

j=1

K
∑

k=1

I (φk = d)αk (j, d) βk (j, φk+1)

. (3.53)

3.3.2 Sequence Classification

The OTI ESD-HMM was applied to the problem of sequence classification using the

data sets described in Section 3.1.2. A single Gaussian distribution was again used to

estimate the state duration probabilities to avoid the need for an unrealistic amount

of data for training. The state transition times used were manually generated when it

was observed that the subject left an area of interest. The optimal number of states

for the fully connected OTI ESD-HMM was found to be five. The sequence confusion

matrix presented in Table 3.6 demonstrates that the model is capable of correctly

classifying previously unseen activity sequences with the same level of accuracy as

the three state ESD-HMM and the two state left-right ESD-HMM. Unlike these latter

models, however, the five state OTI ESD-HMM is able to recreate the activity sequences

when the generative process is applied.

3.3.3 Duration Abnormality

The duration abnormality experiment from Section 3.2.3 was repeated to investigate

the suitability of the OTI ESD-HMM as a classifier of normal and abnormal activity

sequences. Classification was again performed by thresholding on the highest log-

Table 3.6: Test sequence confusion matrix for the five state ESD-HMM with
observed time indices.

Cereal Toast Cook Dinner Reheat Dinner Bacon & Eggs

Cereal 14 0 0 0 0

Toast 0 14 0 0 0

Cook Dinner 0 0 14 0 0

Reheat Dinner 0 0 0 14 0

Bacon & Eggs 0 0 0 0 14
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Figure 3.15: ROC curve for the five state ESD-HMM with observed time
indices.

likelihood returned by each of the trained models when queried on the likelihood of

generating the unseen normal and abnormal sequences described in Section 3.2.1. The

model’s classification performance is demonstrated via the ROC curve in Figure 3.15.

The curve displays a slight improvement in classification accuracy over the two state

left-right ESD-HMM in Figure 3.12.

A comparison between the fully connected OTI ESD-HMM and a left-right constrained

OTI ESD-HMM was not possible on these data sets at the time this work was under-

taken due to numerical underrun limitations. Such an investigation remains as future

work.

3.3.4 Conclusion

This section has investigated the application of OTI ESD-HMM towards modelling

sequences of human activity augmented with pressure pad sensor information. The

ability of the five state OTI ESD-HMM to correctly classify unseen normal sequences

was shown to match the accuracy of the three state ESD-HMM and the two state

left-right ESD-HMM. The OTI ESD-HMM showed improved classification accuracy

over to the standard ESD-HMM when applied to the detection of abnormal sequences

via thresholding. The comparable performance of the OTI ESD-HMM combined with

reduced parameter estimation complexity and improved sequence representation makes

this model a viable alternative to the standard ESD-HMM when the state transition

times are known.
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3.4 Real World Application

Much of the focus of this chapter has been on the use of the HMM and ESD-HMM as

classifiers of normal and abnormal behaviour from simple activity sequences recorded in

a laboratory environment. This focus will now be shifted to consider the performance

of the models using data collected from a real world environment with a comparison

of the standard and left-right constrained HMM, and the fully connected and left-right

constrained OTI ESD-HMM.

3.4.1 Experimentation Methodology

Two cameras were installed into the home of a volunteer for a period of two weeks to

record the subject’s daily morning routine as they prepared to leave for work. Fig-

ure 3.16 shows a layout of the subject’s home and details the position of the cameras,

the virtual pressure mat sensors and the regions of interest. The camera view of the

home is shown in Figure 3.17.

The Gaussian background model used in the tracker for the laboratory experimentation

was replaced with the Statistical And Knowledge-Based Object deTector (SAKBOT)

algorithm proposed by Cucchiara et al. (2003), the former being unable to cope with the

harsh lighting conditions experienced inside the home. The SAKBOT was modified to

use the lighting model proposed by Greenhill et al. (2004) to increase the resistance of

the algorithm to rapid changes in lighting. Further modification introduced a feedback

loop from the Kalman filter to the background elimination model so as to collect an

object’s motion history for use in preventing the background model from moving an

object with a history of motion into the background the moment it comes to rest.

This modification was necessary to prevent the background model from classifying the

subject as part of the background when they stand motionless in the scene.

As in previous experiments, the subject’s proximity to known areas of interest was

used to infer the nature of their activity. The observation codebook used in this

experiment consisted of “No Observation”, for when the subject was unable to be

tracked, “Front Door,” “Rear Door,” “Kitchen Table,” “Food Preparation Area,”

“Kitchen Hallway,” “Kitchen<->Lounge Hallway,” “Lounge Hallway,” “Lounge

Rug,” “Lounge Sofa,” “Laundry,” “Television” and “Laundry Entry.” Three fur-

ther observations of “Toilet,” “Bathroom” and “Bedroom” were manually annotated

to avoid the need for cameras to be deployed in these rooms in order to protect the

privacy of the subject.
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Figure 3.16: Approximate layout of the real world environment showing the
location of the areas of interest, cameras and the virtual pressure mats.

(a) (b)

Figure 3.17: The real world scene as viewed by cameras deployed in (a) the
kitchen and (b) the lounge room.

71



Nine usable days of footage were obtained from the ten weekdays captured, the dis-

carded recording being unusable due to low lighting conditions. The recorded video

was manually segmented into seven classes of often repeated activity: Drink orange

juice, Leave home, Walk from rear room to kitchen, Walk from kitchen to

rear room, Visit bathroom, Visit bedroom and Visit toilet. The numerical

underrun limitation of the OTI ESD-HMM implementation, however, constrained ex-

perimentation to the Drinking orange juice, Leave home, Walk from rear room

to kitchen and Walk from kitchen to rear room classes. The number of samples

available for the four classes were 20, 11, 37 and 35 respectively.

The subject’s location was again sampled once every 25 frames using the visual tracker.

The state switching times were obtained through manual annotation of the video with

the times that the subject is seen to trigger pressure mats virtually deployed around

the home as outlined in Figure 3.16. Rather than assuming a Gaussian distribution,

the state duration probabilities of the OTI ESD-HMM were linearly interpolated for

this experiment. Domain knowledge was applied to find the number of states used to

model the sequence classes. These are shown in Table 3.7.

3.4.2 Sequence Classification

Classification accuracy for each of the HMM, left-right HMM, OTI ESD-HMM and the

left-right OTI ESD-HMM was measured using leave-one-out cross validation. The con-

fusion matrices shown in Tables 3.8 through 3.11 display only minor variation between

the models, suggesting that they are all equally suited to differentiating between the

available sequences.

Confusion between the Walk from rear room to kitchen and the Walk from

kitchen to rear room classes is apparent in all four models. Investigation revealed

Table 3.7: The number of states used to model the four real world sequence
classes for the four models.

HMM LR HMM OTI ESD-HMM LR OTI ESD-HMM

Drink OJ 13 13 4 8

Leave Home 15 15 3 6

Rear Room to Kitchen 13 13 4 8

Kitchen to Rear Room 9 9 3 6
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Table 3.8: Confusion matrix for the fully connected HMM.

Drink Leave Rear Room Kitchen to
OJ Home to Kitchen Rear Room

Drink OJ 20 0 0 0

Leave Home 0 10 0 1

Rear Room to Kitchen 0 0 29 8

Kitchen to Rear Room 0 1 13 21

Table 3.9: Confusion matrix for the left-right constrained HMM.

Drink Leave Rear Room Kitchen to
OJ Home to Kitchen Rear Room

Drink OJ 20 0 0 0

Leave Home 0 10 0 1

Rear Room to Kitchen 0 0 29 8

Kitchen to Rear Room 0 1 12 22

Table 3.10: Confusion matrix for the observed time indices ESD-HMM.

Drink Leave Rear Room Kitchen to
OJ Home to Kitchen Rear Room

Drink OJ 19 0 0 0

Leave Home 0 9 1 0

Rear Room to Kitchen 0 2 29 6

Kitchen to Rear Room 1 0 9 25

Table 3.11: Confusion matrix for the observed time indices ESD-HMM with
left-right constraints.

Drink Leave Rear Room Kitchen to
OJ Home to Kitchen Rear Room

Drink OJ 17 1 0 0

Leave Home 1 10 0 0

Rear Room to Kitchen 0 2 28 7

Kitchen to Rear Room 1 0 12 22
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that a high level of noise is present in these sequences in the form of “No Observation”

observations and that the main cause of this noise is due to latency between the time

the subject enters the scene and the tracker classifying them as a trackable object. Clas-

sification of these sequences is hence inherently difficult given that the mean duration

of sequences within these two classes is approximately four seconds.

A number of unclassified sequences are present in the duration model results in Ta-

ble 3.10 and Table 3.11. A single sequence was unable to be classified by the OTI

ESD-HMM in both the Drinking orange juice and the Leave home classes. The

cause of this error is due to the use of interpolated state duration probabilities com-

bined with the leave-one-out cross validation; the unclassified sequence in each instance

possessing a state duration outside the bounds permitted by the trained model. Two

unclassified Drinking orange juice sequences in the results for the left-right OTI

ESD-HMM, minor misclassification of a Walk from kitchen to rear room sequence

as a Drinking orange juice sequence in the OTI ESD-HMM results, and minor

misclassification between members of the Drinking orange juice, Leave home and

the Walk from rear room to kitchen classes in the left-right OTI ESD-HMM results

were likewise caused by the interpolated state durations.

3.4.3 Abnormality Detection

As in Section 3.2.3 and Section 3.3.3, thresholding will be used to measure the relative

accuracy of the models in detecting anomalous behaviour. The highest log-likelihoods

returned when querying each model on the probability of generating a sequence is used.

The log-likelihoods are normalised by sequence length such that a global threshold may

be applied. Thirteen sequences of irregular behaviour uncovered during the video seg-

mentation phase are used and compared against the normal sequences. Leave-one-out

cross validation is again employed to ensure that models are not queried on sequences

used in training.

It should be noted that the anomaly in the sequences used lies only in their infre-

quency; none of the sequences are comprised of true abnormality that would justify the

triggering of an alarm or intervention by an outside party. A summary of the abnor-

mal sequences, the type of abnormality present and possible confusion with the known

normal classes is given in Table 3.12.

The ROC curves in Figure 3.18 depict the relative performance of each of the models.

Surprisingly, the left-right constrained HMM in Figure 3.18(b) shows the most promis-
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Table 3.12: Summary of the real world abnormality sequences.

# Description Abnormality Type Possible Confusion

1 Return to unit Sequence Leave home

2 Make breakfast Sequence, duration Drink Orange Juice

3 Eat breakfast Sequence, duration

4 Ponder life on sofa Duration Kitchen to rear room,
rear room to kitchen

5 Open rear door Sequence, duration

6 Retrieve key from front door Sequence, duration Leave home

7 Aborts leaving home Sequence, duration Leave home

8 Clean kitchen Duration

9 Place jacket on sofa while Sequence, duration Kitchen to rear room,
walk through lounge rear room to kitchen

10 Divert to hat stand while Sequence, duration Kitchen to rear room,
walk through lounge rear room to kitchen,

leave home

11 Place bag on sofa while Sequence, duration Kitchen to rear room,
walk through lounge (1) rear room to kitchen

12 Place bag on sofa while Sequence, duration Kitchen to rear room,
walk through lounge (2) rear room to kitchen

13 Pick up item by front door Sequence, duration Kitchen to rear room,
while walk through lounge rear room to kitchen,

leave home
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Figure 3.18: ROC curves showing the performance of (a) the HMM, (b) the
left-right HMM, (c) the ESD-HMM and (d) the left-right ESD-HMM for the
detection of abnormality among the real world sequences.

ing performance followed by the observed time indices ESD-HMM in Figure 3.18(c).

The worse performance is seen in the standard HMM in Figure 3.18(a) and the left-right

constrained OTI ESD-HMM in Figure 3.18(d). Of the two latter models, the HMM

shows a slightly steeper initial curve compared to the slower rise of the left-right OTI

ESD-HMM but is unable to find the complete set of abnormal sequences until an 80%

false positive rate has been reached. The left-right OTI ESD-HMM, in contrast, attains

a 100% abnormal classification rate at around the 18% false postive rate. Similar prop-

erties are shown in the curves for the left-right HMM and the observed time indices

ESD-HMM. Here, also, the OTI ESD-HMM displays a slightly slower initial curve than

the left-right HMM. Both models attain a 100% abnormal classification rate at around

the 17% and 18% false positive mark.
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The similar performance amongst the models can be clarified by plotting the log-

likelihoods of each of the tested sequences. The log-likelihoods returned by the fully

connected HMM in Figure 3.19(a) shows that most of the abnormal sequences return

a likelihood well below those of the majority of normal sequences. Only the duration

abnormal “ponder life on sofa” and “clean kitchen” sequences, and the sequence and

duration abnormal “make breakfast,” sequence appear amongst the majority of nor-

mal sequences with a high log-likelihood. The inability of the HMM to detect pure

durational abnormality in real world conditions has been affirmed here. The high log-

likelihood of the “make breakfast” sequence is due to a close similarity between this

sequence and the Drink Orange Juice class; the repeated subsequences within the

“make breakfast” sequence being permitted by the fully connected transition structure

of the model.

The majority of classification error, however, relates to the low log-likelihoods returned

by members of the Leave home class. Great variation exists among the sequences in

this class due to noise introduced by rapid changes in lighting when the subject opens

the front door. This results in less accurate trained models and difficulty in accurately

identifying members of this class.

The log-likelihoods returned by the left-right constrained HMM is shown in Fig-

ure 3.19(b). Only the log-likelihoods of the two duration abnormal sequences remain

within close proximity to the majority of normal sequences. The majority of classifi-

cation error is again due to an inability to properly model the noisy members of the

Leave home class.

The query results for the OTI ESD-HMM and the left-right OTI ESD-HMM are shown

in Figure 3.19(c) and Figure 3.19(d) respectively. Here, the likelihoods of the duration

abnormal “ponder life on sofa” and “clean kitchen” sequences have decreased such that

they are – aside from the Leave home class – clearly differentiable from the normal se-

quences. It is interesting to note that while the probabilities of the abnormal sequences

have, on average, decreased, so has the tolerance to noise; the likelihoods of the Leave

home sequences have fallen in line with the abnormal sequences and several examples of

the Drink Orange Juice and Walk from rear room to kitchen classes have moved

down into abnormal regions of the charts.

Investigation reveals that several of the Drink Orange Juice and Walk from rear

room to kitchen sequences possess highly unlikely state durations due to interpolation

while others are hampered by noise and unexpected emissions that are can not be

adequately accounted for without a state transition. The likelihood of a single Walk
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Figure 3.19: The normalised log-likelihoods of the normal and abnormal
sequences for (a) the HMM, (b) the left-right HMM, (c) the ESD-HMM and
(d) the left-right ESD-HMM for the detection of abnormality among the 116
real world sequences.
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from kitchen to rear room sequence has also been greatly reduced due to an unlikely

state duration.

3.4.4 Longer Term Duration Abnormality

The longer term duration abnormality experiment in Section 3.2.4 demonstrated that

only the left-right constrained ESD-HMM was capable of detecting long term dura-

tional abnormality caused by a subject remaining at an otherwise normal activity for

a significantly long period of time. This section revisits the ability of the models to

cope with such anomaly by artificially adjusting the duration for the real world sub-

ject standing in the lounge hallway in a sequence from the Walk from rear room to

kitchen class. The usual time spent in the middle of the room is typically two to four

seconds.

The log-likelihood, again normalised by the length of the observation sequence, of the

adjusted sequence was plotted for each of the HMM, left-right HMM, OTI ESD-HMM

and left-right OTI ESD-HMM as the time spent standing in the hallway is incremented.

The results for the HMM in Figure 3.20(a) and the left-right HMM in Figure 3.20(b)

continue to show that the dynamic time warping nature of these models makes them

unsuitable for finding this type of abnormality.

The results for the OTI ESD-HMM in Figure 3.20(c) and the left-right OTI ESD-

HMM in Figure 3.20(d) show that these models are able to detect an anomaly within

seconds when thresholding at the -3 log-likelihood. Unlike the ESD-HMM featured

in Section 3.2.4, the observed time indices of the fully connected ESD-HMM make it

impossible for the model to smooth the likelihood of the artificially adjusted sequence

via state transitions. Both the OTI ESD-HMM and the left-right OTI ESD-HMM are

therefore suitable for detecting this type of duration anomaly.

3.4.5 Conclusion

This section has used activity sequences gathered from a real world volunteer subject to

investigate the use of the HMM and the OTI ESD-HMM as both sequence classifiers and

as detectors of abnormality. The models showed only minor variations in performance

when applied to sequence classification, due largely to a high presence of noise in two

of the available classes.

Similar performance among the models was also discovered in an investigation into
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Figure 3.20: The normalised log-likelihood of (a) the HMM, (b) the left-right
HMM, (c) the OTI ESD-HMM and (d) the left-right OTI ESD-HMM as the
time spent standing in the lounge hallway in a sequence from the Walk from

rear room to kitchen class is artificially adjusted.
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the application of the models to the detection of abnormality through thresholding.

Although the duration models showed some advantages over the HMM – affirming the

benefit of incorporating duration into a model of human activity – the benefit gained

was diminished by a decreased tolerance to noise.

Both the fully connected and left-right constrained OTI ESD-HMM performed well on

the longer term duration abnormality task; the explicit state transition component en-

sured that the models were unable to smooth the likelihood of generating the artificially

adjusted activity sequences through state transitions. It was shown that the HMM and

left-right HMM were incapable of detecting this type of anomaly in a timely manner.

3.5 Conclusion

This chapter has explored the use of stochastic models as classifiers and detectors of

abnormality in sequences of human activity using data gathered from a laboratory

environment and from a real world volunteer subject.

Section 3.1 demonstrated that the HHMM is a viable model for the learning and recog-

nition of human activity. The hierarchical nature of the model allows for model reuse in

the training of higher level models that represent the inter-activity relationships of the

lower level models. The lack of duration modelling in the standard HHMM, however,

is of concern given the visual tracking system used.

Section 3.2 explored the use of the Explicit State Duration HMM (ESD-HMM) as a

means of modelling human activity. It was shown that incorporating duration into

models of human activity allowed durational abnormalities, defined as an otherwise

normal activity being performed for an unusually short or unusually long period of

time, to be detected. The HMM, in contrast, was shown to be unsuitable for detecting

such anomalies due to its dynamic time warping property. It was demonstrated that

the left-right constrained ESD-HMM was the only model capable of detecting longer

term duration anomalies.

A modified ESD-HMM, in which the state transition times are known, was introduced

in Section 3.3. The Observed Time Indices ESD-HMM (OTI ESD-HMM) was shown

to perform on a par with the ESD-HMM and left-right ESD-HMM when applied to

sequence classification. Marginal improvement was seen over these models when the

OTI ESD-HMM was employed as a classifier of normal and abnormal sequences.

Finally, in Section 3.4, the performance of the left-right and fully connected HMM, and
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the left-right and fully connected OTI ESD-HMM were compared using two weeks of

real world data gathered from the home of a volunteer subject. The model affirmed that

benefit can be gained by explicitly including activity duration into an activity model. It

was also shown that the OTI ESD-HMM was readily capable of detecting the presence

of long term durational abnormality, a task to which the HMM is ill suited. It could not

be shown, however, that the OTI ESD-HMM is a more suitable model for classification

and abnormality detection on this data set due to difficulties encountered with noise.

It is believed, however, that results would show the OTI ESD-HMM model to be more

reliable than the HMM were a more robust tracking system to become available or were

the experiment repeated in an environment with less hostile lighting conditions.
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Chapter 4

Emergent Intertransaction

Association Rule Mining:

Discovering New and Changing

Human Behaviours

Training and inferencing using graphical models such as those used in Chapter 3 is

computationally expensive and is generally limited to applications in which it is rea-

sonable to assume that human activity can be represented as repeatable sequences of

asynchronous activities or events. The task of modelling human behaviour as pre-

cise sequences of events is made difficult by our tendency to interleave our activities

and to adjust our behaviour when we are unexpectedly interrupted. In this chap-

ter, a novel application of intertransaction association rule mining (Lu et al., 1998,

2000) for the detection and analysis of emergent human behaviour is proposed as a

means of tackling this issue. Intertransaction Association Rules (IARs), formally intro-

duced in Section 4.1, are implication rules that can be used to capture the associative,

non-sequential, relationship of events observed within an intelligent environment while

retaining some of the higher level temporal context in which these events occur. Tradi-

tional intratransaction associations retrieved during the IAR mining process function as

a model of the events that are expected to occur in close temporal proximity while the

intertransaction associations capture the larger context in which the intratransaction

events occur. The temporal component of the rules also provides a predictive element

that can be used to forecast the events we can expect to see in a future interval given
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events already observed.

Intelligent environments, however, generate many sensor events over short periods of

time, resulting in dense data sets where the number of frequently occurring events, or

items, can be numerous. This poses a problem for the current EH-Apriori Lu et al.

(2000) and FITI Tung et al. (2003) algorithms for IAR mining as they rely on a com-

putationally costly candidate-generation-then-test approach for rule discovery. This

technique requires that k passes over a database are made to retrieve the set of fre-

quent rules up to length k. Each pass over the data requires the generation of candidates

– the set of all possibly frequent associations given those found in a previous pass. The

scalability of such algorithms is hence limited due to the computational complexity

of generating and testing the frequency of a combinatorial number of candidates. The

number of candidates generated at each pass k of a worst case scenario given n database

items and an intertransaction window of length w is
∑k−1

r=0

[(

n
k

)(

nw
r

)]

. The computa-

tional complexity of testing the frequency of the candidates, many of which may be

infrequent, can become intractable.

Addressing this issue, in Section 4.2 it is shown how pattern growth may be employed as

an alternative to the Apriori based approach for the mining of intertransaction associ-

ations using the Extended FP-Tree (EFP-Tree), an adaptation of the Frequent Pattern

Tree (FP-Tree) (Han et al., 2000, 2004) to the intertransaction association rule mining

problem. Pattern growth is a more computationally efficient method for association

rule mining that eliminates the need for candidate itemset generation by first transpos-

ing a transactional database into an intermediate form that aids subsequent mining.

The original FP-Tree structure and mining algorithm, however, only finds frequent

intratransaction association rules and is not suitable for intertransaction rule mining.

Experimental results are presented that show an order of magnitude improvement in

computational performance over the existing algorithms on synthetic dense data and

on real world data captured in the homes of two volunteer subjects.

The second issue faced is how to gain insight into a person’s behaviour so as to detect

abnormality from an overwhelming number of rules that the mining process is likely to

uncover. The use of emergent IARs as a novel means of finding patterns of behaviour

that are of interest is proposed in Section 4.3.1. Emergent IARs are those rules that

display significant growth from one data set to another and their presence may indicate

abnormality evident as either a previously unseen pattern of events or unusually fre-

quent occurrences of behaviour that would otherwise be considered normal. Emergent

IARs offer a convenient means of identifying changes that would otherwise be difficult

to discern through manual inspection of the rule sets. For example, the real world
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event logs from a single week of data can produce around 7,200 patterns yet these can

be distilled down to approximately 150 emergent rules that are likely to be of interest

to us. The same data set mined with a slightly higher support threshold will retrieve

circa 2,700 patterns of which 46 are emergent.

4.1 Intertransaction Association Rules

Consider the set of all items I =
{

a1a2 . . . ai . . . aM
}

occurring in a database

DB = 〈T1T2 . . . TN 〉 of transactions Ti (1 ≤ i ≤ N) such that Ti (x) ∈ I ∀ items x in Ti.

At any transaction Ti the items are said to form the set STi
=
{

ai
Ti
. . . ak

Ti

}

. For the case

of a single intertransaction dimension attribute, an intertransaction sliding window of

size w transactions is passed over the transactions in DB to extract the extended trans-

action items such that the extended transaction at Ti is ETi
= {STi

, STi+1 . . . STi+w}

and the set of all possible extended transaction items is E =
{

a1
0a

2
0 . . . a

i
d . . . a

M
w

}

. The

mining problem reduces to the traditional intratransaction case when w = 0, that is,

when only intratransaction items are included in an extended transaction itemset.

The superscript notation is dropped when the value of an item is known. For example,

the extended transaction items retrieved with a sliding intertransaction window of size

w = 5 starting at transaction ID 300 from the example database in Table 4.1 are C0, B0,

A0, C2, E2, B3, E3, B4, and A4, given that the dimensional attribute is the transaction

time.

Intertransaction association rules are implication rules such that X ⇒ Y with the

following properties (Tung et al., 2003):

X ⊆ E,Y ⊆ E (4.1)

∃ai
0 ∈ X (4.2)

∃ai
d ∈ Y, d > 0 (4.3)

X ∩ Y = ∅ (4.4)

The support and confidence measures of an itemset are calculated as
|Txy|

N
and

|Txy|
|Tx|

respectively where |Txy| is the number of extended transactions containing all items in

X ∪ Y , |Tx| is the number of extended transactions containing all items in X and N is

the number of extended transactions.

In this work the extended transaction items
{

a1
0 . . . a

M
0

}

are referred to as intraitems
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and the extended transaction items
{

a1
1 . . . a

w
M

}

are referred to as interitems.

4.2 Extended Frequent Pattern Tree

The proposed Extended Frequent Pattern Tree (EFP-Tree) is a tree structure of de-

scending frequency ordered intraitem nodes with zero or one interitem Frequent Pattern

Tree (FP-Tree) subtrees. The frequency ordering of the interitem FP-Tree is condi-

tioned on the intratransaction item parent. Each node in the tree contains an item ID

which maps to a codebook of item descriptors, a frequency counter, a link to its parent

node, links to zero or more children and a link to the next node in the tree of the same

item ID. Interitem nodes also carry the dimensional offset of the item to ensure that the

intertransaction relationship of the item relative to its intraitem parent is maintained.

Nodes are placed into the tree such that the entire set of frequent items for an arbitrary

intertransaction can be restored by traversing the tree. The ordering of nodes into

descending frequency increases the likelihood of items placed into the tree sharing

common nodes, creating a compact representation of the database transactions that

captures the associative relationship of the transaction items.

4.2.1 Tree Construction

Three passes, detailed in Algorithm 4.1, over a database are required to build the tree

structure. As in the FP-Tree, the frequency of single items is gathered in an initial

pass over the database to build the set of frequent single intraitems, or 1-itemsets,

and the set of frequent interitems given a minimum support threshold. The intraitems

are ordered by descending frequency to become the item lookup header table for the

intraitem tree. The frequent items are those items whose frequency count is greater

than or equal to the minimum support threshold α.

The intraitem FP-Tree is built and the conditional frequencies of the interitems are

found in the second pass. The intraitems for each transaction Ti are first filtered to

remove items not present in the known frequent intraitem set from the first pass and

are sorted in order of descending frequency. The ordered item list is recursively inserted

into the tree such that at each level l in the tree the child node with the ID of the lth

item in the ordered array is traversed and its frequency count is incremented. Children

nodes that do not exist will be created prior to traversal and kept in codebook ID order

so that binary search can be used when traversing the tree. The linked list of nodes of
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Algorithm 4.1: EFP-Tree Construction
Input: Transaction Database DB, sliding intertransaction window size maxSpan, tree building

support threshold α

Output: EFP-Tree tree

Method:

// First Pass

Count the frequency of single items in DB to build the set of frequent items F such that
support (Fj) ≥ α (1 ≤ j ≤ |F |);

// Second Pass

Create the intratransaction root node tree;
For each intratransaction Ti ∈ DB do

A ← intratransaction items such that Aj ∈ Ti, Aj ∈ F (1 ≤ j ≤ |A|) ordered by
descending frequency;
I ← count of intertransaction items |Ti, maxSpan;
recursively insert the nodes A onto tree finishing at node interParent;
interParent.interFreq ← interParent.interFreq + I ;

end

// Third Pass

For each intratransaction Ti ∈ DB do

A ← intratransaction items such that Aj ∈ Ti, Aj ∈ F (1 ≤ j ≤ |A|) ordered by
descending frequency;
interParent ← intraitem node in tree corresponding to A;
E ← intertransaction items such that Ej ∈ Ti, Ej ∈ F (1 ≤ j ≤ |E|) ordered by
descending frequency | leaf.interFreq;
create the root node interParent.interTree;
recursively insert the nodes E onto interParent.interTree;

end

return tree

same item ID that originates from the root node header table is updated whenever a

new node is created. The frequency of the interitems relative to Ti are incremented in

the final intraitem node that is traversed. The ordered lists of frequent intraitems are

stored for use in the third pass. The root node is said to be at level l = 0.

The third and final pass over the database builds the interitem sub-trees in the EFP-

Tree structure. At each transaction Ti the cached ordered list of frequent intraitems

are used to traverse the intraitem tree and locate the intraitem node that will become

the root node of the interitem subtree. The extended items within the intertransac-

tion sliding window at Ti are filtered to remove known infrequent interitems and the

remaining items are sorted in order of local descending frequency given the intraitem

parent. The ordered interitems are then recursively inserted into the interitem subtree

as before.

The example database in Table 4.1 and Table 4.2 is used to demonstrate the construc-

tion of the EFP-Tree structure in Figure 4.1 using a minimum support threshold of

α = 3 and a sliding intertransaction window size of w = 5.
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Table 4.1: Example database with the unsorted and descending frequency
ordered items. The time at which each transaction occurs is shown.

Trans. ID Time Raw Items Ordered Items

100 1 A C B B C A
200 2 B B
300 3 C A B B C A
400 5 E C C E
500 6 B E B E
600 7 A B B A
700 9 C C
800 10 C D B B C D
900 11 C B A B C A

Table 4.2: Extended transactions retrieved from the example database in
Table 4.1 using a sliding intertransaction window of size w = 5.

Time Extended transaction items

1 B0 C0 A0 B1 B2 C2 A2 C4 E4 B5 E5

2 B0 B1 C1 A1 C3 E3 B4 E4 B5 A5

3 B0 C0 A0 C2 E2 B3 E3 B4 A4

5 C0 E0 B1 E1 B2 A2 C4 B5 C5 D5

6 B0 E0 B1 A1 C3 B4 C4 D4 B5 C5 A5

7 B0 A0 C2 B3 C3 D3 B4 C4 A4

9 C0 B1 C1 D1 B2 C2 A2

10 B0 C0 D0 B1 C1 A1

11 B0 C0 A0
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numbers depict the node frequency. The header tables of the intertransaction
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The frequent items are found in the first pass over the database from Table 4.2. The

frequent intraitems found given the minimum support threshold α = 3 are B0:7, C0:6

and A0:4 with frequency counts of 7, 6 and 4 respectively. The frequent interitems

meeting the same minimum support threshold are A1:3, A2:3, B1:6, B2:3, B4:4, B5:4,

C1:3, C2:4, C3:3 and C4:4.

In the second pass, the intraitems B0, C0 and A0 are added to the root node of an empty

tree such that all nodes are recursively created to produce the FP-Tree in Figure 4.2(a).

The frequency of item B0 is incremented by the next transaction. The items B0, C0

and A0 are added again, the existing nodes are traversed and their frequency counts

are each incremented. The next two transactions see the node C0 created as the second

child of the root node and an increment to the count of B0. The FP-Tree up to this

point is in Figure 4.2(b). Figure 4.2(c) shows the state of the tree when B0 and A0 are

added such that A0 becomes the second child of B0 and the count of B0 is incremented

once more. The count of the nodes representing the intratransaction associations C0

and B0, C0 are incremented by the next two transactions. Finally, the counts of the

items in the path B0, C0, A0 are once again incremented. The final intraitem FP-Tree

is presented in Figure 4.2(d).

The third and final pass over the example database now begins. The known frequent

items found in the first pass allow the extended transaction items at time 1 to be

reduced to B0, C0, A0, B1, A2, B2, C2, C4 and B5 given that the items E4 and E5 are

known to not meet the minimum support threshold. The interitems will be inserted at

the node identified by following the path B0, C0, A0 through the tree in Figure 4.2(d).

The insertion of the ordered list of interitems from the first extended transaction will

create the children interitem nodes C2, B1, A2, B2, C4 and B5 as shown in Figure 4.3.

Next, the extended items at time 2 are reduced to A1, B1, C1, C3, B4 and B5. The items

are ordered and inserted as new children of B0 to produce the EFP-Tree in Figure 4.4.

The nodes B0, C0 and A0 will again be traversed at time 3. The child node C2 will

then be incremented and a new node for item B4 will be inserted as a child of C2 to

create the EFP-Tree in Figure 4.5.

The interitems from Table 4.2 at time 5 are reduced to B1, A2, B2, C4 and B5 and

inserted as new children of C0 to produce the tree shown in Figure 4.6. Next, the

interitems at time 6 are filtered and inserted as children of B0 such that the counts of

A1, B1, C3, B4 and B5 are each incremented and the node C4 is inserted as a new child

of B5. The resulting EFP-Tree is given in Figure 4.7. At time 7 the intraitems B0 and

A0 are traversed and the interitems C2, C3, B4 and C4 are inserted as children of A0

to create the tree shown in Figure 4.8. The next transaction at time 9 sees the count
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Figure 4.2: The intraitem FP-Tree at various stages of construction after the
intraitems from the extended transactions in Table 4.2 at (a) time 1 are added,
(b) the tree after time 6, (c) after time 7 and, finally, (d) after time 11.

of the nodes A2, B1 and B2, as children of C0, incremented and the interitems C1 and

C2 inserted as children of B2. The resulting EFP-Tree is shown in Figure 4.9. The

final tree, in Figure 4.1, is obtained by traversing B0, C0 and appending the frequent

interitems from the extended transaction at time 10.

No interitems exist in the extended items in Table 4.2 at time 11 so no further action

is required.

4.2.2 Data Mining

A method to extract the intertransaction associations present in the EFP-Tree structure

and to generate the IARs is now required. As in the FP-Tree, retrieval of association

rules from the EFP-Tree is made possible by the pattern growth property (Han et al.,

2000, 2004). Pattern growth uses a divide and conquer approach that recursively builds

the entire set of frequent associations by constructing trees conditioned on known fre-
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quent base rules and taking the dot product of the frequent items in the conditional tree

and the conditional base itemset to produce new rules. These new rules then become

the conditional base for the next set of conditional trees to be mined.

The Frequent Pattern Growth (FP-Growth) algorithm from the FP-Tree differs to the

Extended FP-Growth (EFP-Growth) algorithm used to mine the EFP-Tree in that

the latter must consider intertransaction relationship inheritance along the intraitem

nodes.

Property 4.2.1. (Intertransaction inheritance property) Intratransaction item

nodes inherit the intertransaction item relationships of their intratransaction item chil-

dren.

Interitems are inserted into a subtree whose root node is the last intraitem node tra-

versed to when an extended transaction itemset is sorted into descending frequency

order and placed into the EFP-Tree. As a given interitem subtree can only be reached

by traversing the intraitem tree in the presence of all parent intraitem nodes it follows

that the relationship between an intraitem node and the items in the subtree must

apply to all nodes traversed to reach the intertransaction item subtree.

Example 4.2.1. The extended transaction L = A0, B0, C0, B1, C3 is inserted as an

ordered item list into an empty tree. The item nodes A0, B0 and C0 are created as

a single branch in the intraitem tree and the items B1 and C3 are in turn inserted as

interitem nodes as children of C0. Given Property 4.2.1 we can infer that there exists

a relation A0 ⇒ B1 which is known to exist as both A0 ∈ L and B1 ∈ L.

The EFP-Growth algorithm, detailed in Algorithm 4.2, will now be described. Starting

with an EFP-Tree T and an empty conditional base, or rule suffix, EFP-Growth iterates

over the set of intraitems I in T to build a conditional tree Tc conditioned on I for

each frequent I. At each recursion, I is prepended to the conditional base to generate,

or grow, a new association rule and to build the conditional tree for the next recursive

step. No candidate generation is necessary as the frequency of the items is stored in

the tree structure and all generated rules are guaranteed to be frequent.

Two types of conditional tree are used in EFP-Growth, a conditional EFP-Tree Tc used

for finding the related intraitems and interitems that can be used to extend the present

intraitem rule suffix and a FP-Tree Te of the interitems inherited by the conditional

base. This latter tree is used to find the interitem associations for a given intraitem

rule suffix and is required as not all interitems inherited by the conditional base may

be included in Tc.
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Algorithm 4.2: EFP-Growth
Input: EFP-Tree N , mining support threshold α, sliding intertransaction window size maxSpan

Output: Set of frequent rules
Method:

minedRules ← ∅;
For each item ai in header table of N from least to most frequent such that
support (ai) ≥ α do

Find the conditional prefix path and the extended items for ai, propagate the
intertransaction items of each occurrence of ai to its parent and build the conditional
EFP-Tree Tc;
If Tc contains a single intratransaction path P such that no non-leaf node contains an
intertransaction subtree then

Tc ← Tc with P removed;
singlePathRules ← all combinations of intratransaction nodes in P ;
singlePathRules ← singlePathRules × rules returned by call to
FP-Growth (leaf node of P, α) as in Algorithm 2.3;

end

returnedRules ← call EFP-Growth (Tc, α,maxSpan);
Build the intertransaction item FP-Tree Te using the extended items from ai;
interRules ← call FP-Growth (Te, α) as in Algorithm 2.3;
ruleSet ← returnedRules ∪ interRules ∪ singlePathRules;
For each rule R ∈ ruleSet do

add ai to R with support (R) = min (support (R) , support (ai));
end

add ai to ruleSet with support = frequency of ai in N ;
minedRules ← minedRules ∪ ruleSet;

end

Return minedRules

Given a tree T , the conditional tree Tc conditioned on some I is found by collecting

the set of extended transactions formed through the union of the prefix path and the

inherited interitems for each node in T whose item ID is I and whose immediate parent

is an intraitem node. The prefix path for any given node is the set of its parent nodes

and corresponding frequencies as stored in the EFP-Tree. All nodes in T of item ID

I are found by following the linked list of “same item” ID nodes, the head of which is

stored in the intraitem header table of T . The extended transactions are then used to

build Tc as described in Section 4.2.1.

The conditional interitem tree Te for a given conditional base is found by constructing

an FP-Tree of the interitem transactions inherited by the conditional base rule and

using FP-Growth to mine the resulting tree. Taking the dot product of the conditional

base and the set of interitem associations returned by FP-Growth produces the entire

set of intertransaction associations related to the conditional base.

This process continues recursively until no more conditional trees are built or until only

a single intraitem path exists in Tc. If Tc contains a single intraitem path we can avoid

recursion and find the complete set of rules given the conditional base by finding the
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Figure 4.10: The conditional EFP-Tree tree Tc and conditional interitem
FP-Tree Te for (a) Tc|A0, (b) Te|A0 and Te|B0A0, (c) Tc|C0A0, (d) Tc|C0 and
(e) Te|C0 when the EFP-Tree in Figure 4.1 is mined with a minimum support
threshold of α = 2.

dot product of the intraitem combinations in Tc and the interitem associations returned

when calling FP-Growth on the interitem subtree.

Although the example EFP-Tree T in Figure 4.1 was built with a minimum support

level of α = 3, the support threshold will be set to α = 2 for mining the tree in order to

demonstrate the mining process in finer detail than is possible at the original support

setting.

Conditioning T on A0, we find the conditional prefix paths 〈B0:1〉 and 〈B0:3 C0:3〉. The

intertransaction items 〈C2:1 C3:1 B4:1 C4:1〉 are related to 〈B0:1〉 and the

interitems 〈C2:1 B1:1 A2:1 B2:1 C4:1 C5:1〉 and 〈C2:1 B4:1〉 are found for 〈B0:3 C0:3〉.

The conditional tree Tc|A0 with α = 2 is shown in Figure 4.10(a) and the interitem

FP-Tree Te|A0 in Figure 4.10(b).

The set of intertransaction rules associated with the conditional base A0 is found by

taking the dot product of A0 and the interitem associations returned by FP-Growth

from the tree in Figure 4.10(b). The resulting rules are A0 ⇒ C2:3, A0 ⇒ B4:2,

A0 ⇒ C4:2, A0C2 ⇒ B4:2 and A0C2 ⇒ C4:2.

Recursing into the conditional tree in Figure 4.10(a), EFP-Growth grows the condi-
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tional base by finding the least frequent intraitem whose support meets the support

threshold for mining. This item, C0, is prepended to A0 to create the new conditional

base C0A0 and the intratransaction rule C0 ⇒ A0:3. The single interitem prefix path

〈B0:4〉 and its inherited interitems 〈C2:1 B4:1〉 and 〈C2:1 C4:1〉 form to create the single

intraitem path conditional tree shown in Figure 4.10(c). The inherited items of C0A0

are used to build a single node FP-Tree Te containing C2:2 resulting in the genera-

tion of a single rule C0A0 ⇒ C2:2 when the dot product of the interitem associations

found in Te|C0A0 and the conditional base is found. Recursively mining the tree in

Figure 4.10(c) generates the rules B0C0 ⇒ A0:2 and B0C0A0 ⇒ C2:2.

The mining now returns to Tc|A0 to create the next conditional base B0A0 and generate

its respective rule B0 ⇒ A0:4. No prefix path of B0A0 exists in Figure 4.10(a) so

no conditional tree Tc|B0A0 needs to be built. The mining of the interitem FP-Tree

Te|B0A0, the same as for Te|A0 in Figure 4.10(b), generates the rules B0A0 ⇒ C2:3,

B0A0 ⇒ B4:2, B0A0 ⇒ C4:2, B0A0C2 ⇒ B4:2 and B0A0C2 ⇒ C4:2.

Upon return from a recursive call EFP-Growth will update the immediate parent of

each node whose item ID is I such that the interitems are inherited and ready for

conditioning on the next frequent item. It is for this reason that the mining algorithm

grows rules by recursing into trees conditioned on the least frequent intraitems first.

Returning to the original tree T in Figure 4.1 the recursive mining technique will be

applied in turn to the conditional bases C0 and B0. The conditional trees Tc|C0 and

Te|C0 are given in Figure 4.10(d) and Figure 4.10(e) respectively.

IARs generated through EFP-Growth may be required to adhere to constraints present

in the application domain. For example, the association B0C4 ⇒ C2:1 makes little sense

when the intertransaction attribute of the items is temporal and the rules are to be

applied to prediction. In this case we can reorder the items to produce the association

B0C2 ⇒ C4:1 without affecting the accuracy of the support measure. The confidence

measure of a reordered rule can be calculated by returning extra information during

the recursive mining step.

4.2.3 Benchmark Comparisons

Both synthetic data, employed to model the best and worst case scenarios for association

rule mining, and real world data sets, to indicate the practical application of the mining

algorithms, were used to compare the computational performance and peak memory

requirements of EFP-Growth with FITI. These performance measures are important as
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they empirically demonstrate the scalability of the algorithms on input data of varying

characteristics. For each data set the ability of the algorithms to scale with respect to

the length of the intertransaction window and a decreasing minimum support threshold

is observed. Tung et al. (2003) have previously shown FITI to be computationally

more efficient than EH-Apriori and so the latter algorithm is not considered in this

experiment.

The real world data used (Tapia et al., 2004) are event logs from an array of state-

change sensors installed in the homes of two volunteer subjects, a thirty year old working

professional and an eighty year old retiree, over a period of sixteen days. The sensors, 77

in the first subject’s home and 84 in the second, were fitted to a variety of appliances,

containers and furniture to log the times of use. These events were discretised for

mining into transactions of five minute intervals to produce 658 transactions for the

first subject and 748 transactions for the second. Unique sensor IDs were stripped

from the event logs to reduce the sensor information to only include the sensor state

and its room and object context. For example, multiple sensors installed on the doors

of a cabinet are reduced to Kitchen/Cabinet true and Kitchen/Cabinet false events.

The event codebooks contained 76 and 80 entries for the first and second subjects

respectively.

Two synthetic data sets representing sparse and dense data were generated using the

method described in Lu et al. (2000); Tung et al. (2003), the same method used to

compare the EH-Apriori algorithm to FITI. The data synthesis method is a two step

process that first generates a pool of candidate intertransaction associations and then

uses this pool to populate the transactional data set. The characteristics and features of

the generated data is defined by several parameters that guide the generation process.

These parameters include the size of the intertransaction pool, the mean and maximum

length of the intertransaction associations, the maximum number of unique items that

may be in the data set and the maximum interval span of the associations. Table 4.3

lists the parameters used to create the data sets used in the experimentation.

Intertransaction association rule mining in FITI occurs only after the set of frequent

intratransaction associations have been found. Knowledge of these rules is then used to

transform the database into a lookup structure that aids intertransaction mining. For

this experiment, FITI was implemented using the FP-Tree and FP-Growth algorithm

for the initial mining phase. This was necessary in order for a fair comparison of the

algorithms to be made, it having previously been shown that FP-Growth performs

an order of magnitude faster than the Apriori algorithm used in the original FITI

implementation (Han et al., 2000).
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Table 4.3: Parameters used in the generation of the synthetic sparse and synthetic
dense data sets.

Parameter Sparse Dense

Number of intratransactions 500 200
Size of the intertransaction source pool 50 200

Average length of intratransactions 5 25
Maximum length of intratransactions 10 50
Average length of intertransactions 5 8

Maximum length of intertransactions 10 20
Maximum number of unique items in the data 500 100
Maximum interval span of intertransactions 4 6

The algorithms were implemented in Ruby, an interpreted language, and benchmarked

on a 3.2GHz Pentium 4 running FreeBSD.

Limitations of the Benchmark Environment

Before discussing results, execution time irregularities should be noted in the EFP-

Growth curve in Figure 4.13(a) at w = 2 and at w = 7. Irregularities also appear for

FITI in Figure 4.12(a) at the 1.1% support threshold, in Figure 4.12(b) at 1% support

and in Figure 4.13(b) at w = 4.

Profiling revealed that these irregularities are caused by an erratic garbage collector in

the Ruby interpreter. When triggered, the garbage collector will spend a dispropor-

tionally long time seeking memory to free.

This behaviour was consistently reproduced on the FreeBSD 5.3, Linux 2.6 and Win-

dows XP platforms using the 1.6 and 1.8 Ruby interpreter series. This behaviour is

independent of the algorithm being run and was found present in the implementations

of the EH-Apriori, FITI, FP-Growth and EFP-Growth algorithms. The garbage col-

lector behaved normally for all other points on the graphs and hence the irregularities

found do not invalidate the results obtained.

Minimum Support Threshold

For the first set of results, the support threshold was gradually lowered from 1.6% to

0.6% with a fixed intertransaction window size of 4 and from 13% to 8% with a fixed
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window size of 6 for the synthetic sparse and synthetic dense data sets respectively.

The plot in Figure 4.11(a) shows FITI outperforming EFP-Growth until the 1% sup-

port threshold is reached. FITI has an advantage at the higher support thresholds as

it is able to remove unnecessary data prior to counting. This benefit is reduced as

the number of candidates generated by FITI increases when the support threshold is

lowered. EFP-Growth outperforms FITI at the lower support thresholds and especially

at the 0.6% level where an explosion in the number of rules, as seen in Figure 4.11(e),

results in an exponential increase in the number of candidate itemsets generated and

counted by FITI. The plot of the memory requirements of the two algorithms in Fig-

ure 4.11(c) shows that although FITI has greatly reduced memory needs compared to

EFP-Growth at the higher support levels, it is the latter algorithm that displays more

stable memory use as the number of rules increases exponentially. FITI has lower mem-

ory requirements at the higher support levels because it is able to discard many known

infrequent associations which results in a low number of candidates being generated.

We begin to see an order of magnitude difference in the algorithm execution times

on the dense data in Figure 4.11(b). Although FITI marginally outperforms EFP-

Growth at the 12.5% and 13% support threshold, FITI is overwhelmed by the number

of candidate itemsets generated at the lower thresholds. The memory requirements for

the dense data set in Figure 4.11(d) shows FITI has an advantage at all but the 9%

and lower support levels. Here the memory usage continues to increase rapidly for FITI

whereas the peak memory requirement of EFP-Growth remains stable. The number of

rules discovered at each support level are shown in Figure 4.12(f).

The execution times in Figure 4.12(a) and peak memory usage in Figure 4.12(c) for the

first real world data set compares the algorithms’ performance as the support threshold

is lowered from 1.5% to 0.7%. An order of magnitude difference in the running times

exists at the lower support levels due to the large number of discovered rules and a

high number of FITI generated candidates. An exponential increase in the number of

rules discovered, shown in Figure 4.13(e), is reflected in a jump in the peak memory

use of the two algorithms. Both algorithms use similar amounts of memory up until

this point.

Figure 4.12(b) depicts the execution time of EFP-Growth and FITI on the second real

world data set over a support threshold range of 0.4% to 1.3%. EFP-Growth is able

to maintain its computational advantage over FITI at all support levels. Memory use,

shown in Figure 4.12(d), sees FITI again having an advantage only at the higher support

levels where the number of rules, shown in Figure 4.14(f), and hence the number of
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candidates generated remains low.

Intertransaction Sliding Window Size

The intertransaction window size in Figure 4.13 is incremented from w = 0 to w = 10

for the sparse data and w = 8 for the dense data with fixed minimum support thresholds

of 1% and 10% respectively.

Figure 4.13(a) shows that EFP-Growth has only a marginal computational advantage

on the sparse data set, the number of rules found and the number of candidates gen-

erated by FITI remaining relatively low. The memory requirements in Figure 4.13(c)

are seen to be increasing at a similar pace with FITI requiring slightly less memory

than EFP-Growth until w = 9. Figure 4.13(e) depicts the number of rules retrieved

with each window size. FITI has similar execution times to EFP-Growth on the dense

data in Figure 4.13(b) set until the intertransaction size w = 5. The curves begin to

diverge at this point, the FITI execution time eventually being an order of magnitude

greater than EFP-Growth at w = 8. The FITI memory needs, from Figure 4.13(d), are

overall lower than that for EFP-Growth but are growing exponentially with respect to

the sliding window size due to the number of candidate itemsets being created. The

number of rules mined at each window size are given in Figure 4.13(f).

Performance on the real world data is compared by incrementing the sliding window

size up to w = 12 to find associations spanning up to an hour. The support thresholds

are fixed at 1% and 0.4% for the first and second data sets.

EFP-Growth outpaced FITI computationally in both real world data sets in Fig-

ure 4.14(a) and Figure 4.14(b). A sudden increase in the execution time of the FITI

algorithm is seen in Figure 4.14(b) when the sliding window size is increased from

w = 2 to w = 3. This increase is caused by a sudden large jump in the number of rules

being discovered as can be seen in Figure 4.14(e). The memory requirements of the

algorithms remain similar until w = 8 for both Figure 4.14(c) and Figure 4.14(d). The

EFP-Growth memory use remains stable while FITI continues to increase linearly as

the number of rules, seen in Figure 4.14(e), being discovered begins to taper off at this

point.
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Figure 4.11: The execution time (a), memory use (c) and the number of rules
found (e) for the synthetic sparse data set with the intertransaction window
size fixed at w = 4 and the execution time (b), memory use (d) and the number
of rules found (f) for the synthetic dense data set with w = 6 as the minimum
support threshold is adjusted.
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Figure 4.12: The execution time (a), memory use (c) and the number of
rules found (e) for the working professional subject and the execution time
(b), memory use (d) and the number of rules found (f) for the retiree subject
as the minimum support threshold is adjusted. The intertransaction window
size is fixed at w = 6 with an interval size of 300 seconds for both data sets.
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Figure 4.13: The execution time (a), memory use (c) and the number of rules
found (e) for the synthetic sparse data set and the execution time (b), memory
use (d) and the number of rules found (f) for the synthetic dense data set as
the intertransaction window size is increased. The minimum support level was
fixed at 1% and 10% for the sparse and dense data sets respectively.
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Figure 4.14: The execution time (a), memory use (c) and the number of
rules found (e) for the working professional subject with a minimum support
threshold α = 1% and the execution time (b), memory use (d) and the number
of rules found (f) for the retiree subject with α = 0.4% as the intertransaction
window size is increased.
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Conclusion

It has been shown that EFP-Growth is a more scalable algorithm for IAR mining than

FITI. The candidate generation and testing approach of the latter was found to limit its

scalability when the number of discovered itemsets, and hence the number of candidates

being generated and counted, become too large. In contrast, EFP-Growth was shown

to be able to scale well in such cases, especially when applied to the synthetic dense

data and at the lower support levels of the synthetic sparse data set. EFP-Growth was

also shown to outperform FITI on the real world data sets, making it a more suitable

algorithm for IAR mining on the sensor event logs from an intelligent environment than

the EH-Apriori and FITI algorithms.

4.3 Identifying Emergent Behaviours

The mining technique presented up to this point offers an efficient structure for the

representation and retrieval of the complete set of intertransaction associations at an

arbitrary support level. Making sense of the mined rules and identifying patterns

that are representative of abnormal behaviour will require further processing, however,

as described in this section. Here, emergent IAR mining is introduced and shown

how it may be employed in a novel application for the detection of new and changing

behaviours. An example application of emergent IAR mining is shown using the real

world data sets previously introduced in Section 4.2.3.

4.3.1 Emergent Intertransaction Association Rules

The discovery of emergent intertransaction associations seeks to find those rules that

display significant growth in a database of new observations DBN over a historical data

set DBH . An association rule r is said to be emergent when its growth, the ratio of its

support in DBN to its support in DBH , is greater than or equal to some threshold δ

and a minimum support threshold α on DBN has been met. The growth function in

Equation 4.5 (Dong and Li, 1999) has been adopted for this work.

growth (r|DBH ,DBN ) =











0, if sup (r|DBH) = 0 and sup (r|DBN ) = 0

∞, if sup (r|DBH) = 0 and sup (r|DBN ) 6= 0
sup(r|DBN )
sup(r|DBH) otherwise

(4.5)
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Section 4.2 has shown that association rule mining on a database populated with many

frequent items can become computationally expensive, especially at the lower support

thresholds where exponential growth in the number of rules present may result in a

computational explosion. In this application of IAR mining, it is reasonable to expect

that the historical data set will be larger and contain a much greater number of asso-

ciations than will be present in the new data set. It is impractical, therefore, to find

the complete set of association rules for both DBH and DBN and then compare these

sets to find the emergent association rules when the rules in DBN are expected to be

a subset of those in DBH .

The EFP-Tree is instead employed as an intermediate representation of both DBH and

DBN and item constraints (Srikant et al., 1997) are applied to the mining of DBH so

that only a desired subset of rules are extracted. This gives the system the ability

to “query” DBH on the historical frequency of only those associations found to be

frequent in DBN .

4.3.2 Minimal Emergent Intertransaction Association Rules

Only the set of minimal emergent rules are sought to prevent the discovery process from

returning an overwhelming number of rules, the majority of which would be unlikely

to offer any valuable information not already present in the minimal set. Finding the

set of minimal rules was achieved by ordering the mined associations by ascending rule

length and discarding those rules known to contain emergent association subsets using

previously detected emergent rules. An emergent association q is said to be non-minimal

when ∃ {r, t} such that r (t) ⊂ q (t = 0) where r (t) =
{

r1d1+t, r
2
d2+t, . . . r

i
di+t, . . . r

Z
dZ+t

}

is a known emergent rule whose intertransaction offsets {d1, d2, . . . di, . . . dZ} have been

incremented t intervals. For example, if r is an emergent rule C0,D2 ⇒ E2 and q is the

rule A0,B0,C1,D3 ⇒ E3 then q is also known to be emergent because r (1) ⊂ q holds

true.

Although filtering was applied as a post process, the EFP-Tree offers an opportunity

to move the filtering process into the tree mining algorithm so as to guide the mining

of both DBH and DBN .

Only those associations whose frequencies were queried in the historical data set are

included in the reported rule counts in the observations made on the working profes-

sional data set in Section 4.3.3 and the observations made on the retiree data set in

Section 4.3.4.
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4.3.3 Observations on the Working Professional Data Set

The sixteen days worth of event logs from the first subject were divided into two weeks,

each week containing eight days of events. Each week was in turn used as the histor-

ical database DBH to find the emergent rules present in the other. Intertransaction

association rules were mined using an intertransaction sliding window of size w = 6

with transaction intervals of five minutes using a raw minimum support threshold of

α = 8 for both weeks of data. This support level was chosen to balance the quality

and the quantity of the discovered associations, providing an ample number of rules for

analysis while remaining resistant to noise. Noise, in this application, refers to IARs in

DBN that are classified emergent due only due to a lack of historical data and are not

representative of true new behaviour.

Examination of the data sets revealed several instances of unusual behaviour that have

been interpreted to be caused by sensor malfunctions. These conclusions are substanti-

ated by Tapia et al. (2004) who note that sensors were observed to fail or were dislodged

during the data gathering period. Such analysis is further reinforced through inspec-

tion of the sensor event logs which revealed several instances of rapid and repetitive

toggling of a sensor’s state.

Association rules discovered in DBN were classified emergent if a minimum growth of

δ = 5 was measured.

Emergent Behaviour in Week One

Mining the first week of data lead to the discovery of 101 emergent intertransaction

associations from 1,808 investigated rules. Examining the context of each rule revealed

the existence of four distinct groups of associations.

The first group was found to relate to a flurry of kitchen activity on the third day of

the event logs. Here the subject appears to be triggering the sensors on a variety of

kitchen appliances and furniture over an unusually long period, behaviour that results in

significant growth in kitchen related associations. Manual examination of the emergent

rules and the log data did not, however, reveal any discernible behavioural trends aside

from the unusual length of the activity and the frequency of the events therein.

The second set of rules highlight significant growth in kitchen door associated events.

Inspection of the event logs reveals repeated opening and closing of the door on day

four of the data. Although it is possible that these readings were caused by the subject
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frequently entering and leaving the kitchen, we believe that the length of the activity

and the regularity with which the readings occur suggests that a momentary glitch with

the sensor has been detected.

Analysis of the emergent rules from the third group shows that it is unusual to observe

the medicine cabinet and the foyer door being opened or closed in adjacent transactions.

This discovery is attributed to insufficient historical data; discretisation of the event

logs resulted in the foyer door and the medicine cabinet events being predominately

grouped into adjacent intervals in the first week and into single transactions in the

second. The event logs show that it is quite normal in both weeks of data for the

subject to walk through the foyer door shortly before opening the medicine cabinet.

The last set of emergent rules features the subject both flushing the toilet and using the

bathroom medicine cabinet in a single interval. These two events occur normally one

or two intervals apart in the historical data set but not in the same transaction. This

behaviour does not appear to be due to any unusual circumstances and again suggests

that a larger historical data set is required.

Emergent Behaviour in Week Two

Only 46 of the 2,437 intertransaction associations tested from the second week were

identified as emergent. Inspection of these rules again revealed four groups of contex-

tually related associations.

The first group is a set of two single events revealing that the bathroom door is being

opened and shut significantly more often in the second week than in the first. This

innocuous new behaviour is evident over several days of data and is confirmed through

manual inspection of the event logs.

Twenty four rules associating use of the microwave with use of the fridge, the freezer

and the kitchen cabinet within a single transaction period make up the second group of

associations. The historical data shows that while we can expect some of these kitchen

based events to occur within a single interval, the use of the microwave in addition to

two or more of these events all within a single transaction is unusual. Examination of

the event logs showed that meal preparations appear to be a more involved process in

the second week than in the first.

The third set of emergent rules suggest that it is abnormal for the hot and cold water

faucets in the bathroom to be turned both on and off in adjacent intervals. It appears
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that in the first week the hot and cold water is used in shorter sessions and that these

events normally occur within a single transaction. The event logs suggest that the

subject does appear to be spending more time in the bathroom and is opening the

water faucets more frequently than in the first week. It remains conceivable, however,

that this phenomenon is caused by a sensor aberration and not a change in behaviour.

Although the rules in the final set of emergent associations highlight no apparent ab-

normal behaviour, they do document significant growth in the number of times the

bedroom jewellery box is opened and the bedroom light switch is activated in contigu-

ous transactions.

4.3.4 Observations on the Retiree Data Set

As for the working professional subject, the sixteen days of event logs from the second

subject were divided into two weeks and each week was again used in turn as the

historical database DBH to find the emergent rules present in the other. The minimum

support threshold for mining the first week of data was reduced to α = 6 in order to

provide us with a sufficient number of rules for analysis not otherwise available at higher

support levels on this particular data set. The support level for the second week was

again set to α = 8 and a minimum growth measurement of δ = 5 was required for both

weeks.

Emergent Behaviour in Week One

Of the 1,061 intertransaction associations tested, 72 were classified emergent. The

emergent rules were again grouped into sets of related associations.

The first of these groups reveal that the subject is watching more television in the first

week than in the second. The log files confirm that interaction with the TV is common

in the first week yet it is rarely seen in the second.

A second group of associations highlight an anomaly centered around the repeated

opening and closing of the kitchen door one and two intervals after it had previously

been opened or closed. Delving into the event logs reveals a considerable increase in

the number of times the door is opened in this week relative to the historical data set.

It appears that the subject is carrying out activities that require frequent access to the

kitchen over several days of data and that this is not due to a sensor malfunction as

was previously discovered in Section 4.3.3 for the working professional.
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The next group of emergent rules highlight an unexpected behaviour prevalent on the

first and sixth day. Consulting the log data shows that the bathroom door is frequently

opened and closed over a fifteen minute interval on these days yet the historical data

suggests that the bathroom door is normally left open or shut for periods of time outside

the span of the intertransaction sliding window.

A bevy of emergent rules covering significant growth in the relationships among a

variety of objects in the kitchen make up the final set. Emergent rules highlight growth

between use of the microwave and the garbage disposal unit, the repeated opening

and closing of the kitchen door and repeated access to the fridge and microwave. It

is difficult to locate any anomalous behaviour in the log files as all these events also

appear in close proximity in the second week. This suggests that there is not sufficient

historical data available to account for all the combinations of intervals and events

found here.

Emergent Behaviour in Week Two

The presence of four distinct groups of associations were once again identified amongst

the 23 emergent associations discovered from the 758 that were tested.

The first group of emergent associations is made up of two single events that reveal

the subject has accessed their study drawer more frequently in the second week than

in the first. Inspection of the logs confirms this find, the study drawer being opened

and closed in seven transactions in week two but only twice in week one.

The rules in the second group imply abnormal behaviour in the form of the shower

faucet being repeatedly turned on and off that takes place on the first day of the week.

Although it is possible that these rules were due to some new behaviour, the frequency

and regularity of the readings over a period of fifteen minutes suggests the possibility

that they were the result of an error with the sensors.

The next unusual behaviour is a repeated toggling of the light switch in the butler’s

pantry on day seven. The emergent rules show that the light switch in the butler’s

pantry is being turned on for several minutes and then turned off again in a cycle that

is repeated several times every few minutes. The expected behaviour associated with

the butler’s pantry is to see the light switch activated for several minutes up to an hour

at a time with longer periods of time passing before the light is turned on again. A

single rule in this group highlights frequent use of the microwave twenty five to thirty

minutes after the cabinet inside the butler’s pantry has been accessed. It is difficult to
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verify whether these patterns are caused by a new behaviour or not without querying

the subject.

The final emergent rules present five new associations related to the use of the kitchen

cabinet. The first three of these rules show a new association between the cabinet and

the microwave, the latter of which is frequently being opened and closed twenty five

to thirty five minutes after the cabinet has been accessed. The last two rules show

that the closing of the cabinet door, the use of the cold water faucet and the opening

and closing of the fridge all within a single transaction is an unexpected but frequent

occurrence in the second week. None of these rules suggest a new behaviour that we

need to be concerned about.

4.3.5 Automatic Selection of the Intertransaction Sliding Window

Size

Selection of a suitable intertransaction sliding window size for the mining of an arbitrary

data set can be achieved by noting when the number of rules being discovered begins to

taper off as the size of the window is increased. This heuristic can be used to indicate

when a large majority of the associations present in the data have been discovered and

when further increases in the length of the window is likely to only provide a marginal

number of new rules.

For example, Figure 4.15 shows the number of rules being discovered as the window

size is increased for each week of data for both the working professional and the retiree

subject given a raw minimum support threshold of α = 6 and five minute transaction

intervals. The number of rules mined for the first week of data from the working

professional, presented in Figure 4.15(a), appears to taper off when a window size of

circa w = 16 is reached. For the second week, the number of rules being discovered

in Figure 4.15(b) begins to fall off when a window size of approximately w = 19 is

reached. The point at which the number of rules in the retiree data set begins to taper

off is approximately w = 9 for both the first and second week of data as shown in

Figure 4.15(c) and Figure 4.15(d) respectively.

The number of rules returned by the mining process begins to taper off at around

w = 12 for the first week of data from the working professional in Figure 4.16(a) when

the support threshold is set to α = 8. Figure 4.16(b) shows that the majority of rules

present in the second week of the working professional data have been found by w = 4.

For the retiree subject, the number of rules being returned tapers off at w = 5 for the
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Figure 4.15: The number of rules discovered in the (a) first and (b) second
week of the working professional data set and the (a) first and (b) second week
of the retiree data set as the sliding intertransaction window size is increased.
Five minute transaction intervals and a raw minimum support threshold of
α = 6 was used.
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Figure 4.16: The number of rules discovered in the (a) first and (b) second
week of the working professional data set and the (a) first and (b) second week
of the retiree data set as the sliding intertransaction window size is increased.
Five minute transaction intervals and a raw minimum support threshold of
α = 8 was used.
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first week and at w = 9 for the second week of data. The number of rules discovered

here are shown in Figure 4.16(c) and Figure 4.16(d) for the first and second week

respectively.

In the experimentation in the Section 4.3.3 and Section 4.3.4 an intertransaction window

of size of w = 6 with transaction intervals of five minutes was chosen to limit the

intertransaction associations to a half hour period. Were this constraint not in place

then the heuristic could be applied to select a suitable window size.

4.4 Conclusion

Motivated by the limited application of graphical models towards the recognition of

interleaved activities, this chapter has introduced a data mining inspired approach for

the recognition of new and changing human behaviour using emergent intertransaction

association rule mining.

The EFP-Tree and EFP-Growth algorithms for intertransaction association rule min-

ing have been described and experimental results comparing the computational perfor-

mance of EFP-Growth to FITI have been presented. EFP-Growth was shown to scale

well with respect to the minimum support threshold and the intertransaction span-

ning window length, particularly with the synthetic dense data set and data from the

homes of two real world subjects where the presence of many frequent items results in

a combinatorial explosion of candidate itemsets at the lower support thresholds and

with the larger intertransaction window sizes. The benefit gained by FITI pruning

known infrequent intratransaction item combinations prior to intertransaction mining

is diminished when the number of discovered rules, and hence the number of candidate

itemsets that are required to be counted, grows too large.

The EFP-Tree was used in the mining of emergent intertransaction association rules

and their application to the discovery of behavioural changes and sensor aberrations

present in the state-change sensor event logs from the homes of the two volunteer sub-

jects. Item constraints were applied to the EFP-Growth mining as an efficient means of

querying the EFP-Tree of an intertransaction association’s historical support measure.

Experimental results show that emergent associations are able to be applied to the

discovery of short term abnormalities and to detect changes that occur in a subject’s

behavioural patterns over a span of several days. Both intratransaction and inter-

transaction anomalies were detected, attesting to the benefit of incorporating temporal

associative relationships into the mining process.
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Unfortunately, the interpretation of the discovered emergent rules through the manual

inspection of the original event logs remains a tedious and time consuming occupation.

A more streamlined method for the examination and analysis of discovered rules is

required for the intelligent analysis of the emergent rules. This will be the topic of the

next chapter.
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Chapter 5

Visual Exploration and Analysis

of Emergent Behaviours

Manual inspection of the sensor event logs has been noted to be a tedious and time

consuming approach to analysing the context in which emergent intertransaction asso-

ciations occur. The underlying issue here is the overwhelming amount of information

that must be manually trawled in order to derive insight into the rules. The linear

presentation of the event data makes understanding the context of a person’s emergent

behaviour difficult for several reasons. First, it is impossible for users to rapidly gain

an overview of the data. Users are instead forced to scroll through the log files and

remember the date and time of events. Also, navigation to events of interest in an event

log file is limited to string matching searches and manual identification of instances of

emergent rules within the log files is cumbersome and error prone.

A visual data mining alternative that overcomes these limitations is needed, the design

and application of which is the focus of this chapter. The interface that is proposed

assists users in interpreting the emergent rules by highlighting their occurrence in the

context of the original data. An overview of the interface and the rationale behind

its design are discussed in Section 5.1 and Section 5.2 respectively. Experimentation

on the real world data sets from Chapter 4 is then repeated in Section 5.3 using the

visual interface. Observations made using the tool are compared to insight gained

from the manual inspection of the event logs previously described in Section 4.3.3 and

Section 4.3.4.
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5.1 An Interface for the Visual Exploration of Emergent

IARs

The previous works of Brunk et al. (1997); Agrawal et al. (1996); Wong et al. (1999);

Ong et al. (2002); Blanchard et al. (2003) have attempted to tackle the issue of visual

exploration of complete sets of mined association rules. In contrast, the visualisation

approach proposed in this chapter seeks to limit users to consider only those IARs found

to be emergent. These rules are likely to be a minority of the rules discovered and hence

they will be difficult to discern or gain meaning from using any form of visualisation

that covers all rules. A way of visualising the effect of the emergent rules in isolation

and in the context of the original data is necessary. This is done by mapping the

emergent IARs back onto the original data in order to establish the original context

in which the rules occur. Doing so allows users to see both the date and time that

the emergent behaviour occurred and which other sensors were triggered around this

time. Although it was not available for the data set used in the experimentation, a

corresponding video of each instance of the unusual behaviour could also be retrieved

and shown to the user.

A screen capture of the proposed interface with a sample data set loaded is shown in

Figure 5.1. The emergent rules are displayed in a table in the top portion of the screen.

The rules are selectable and can be ordered by their support, growth measures or by

rule similarity. The main display element is a grid that displays a compact view of the

sensors triggered in each transaction interval. The horizontal axis represent the date

and time of the transaction intervals while the horizontal axis shows the sensor events

grouped by their room location. Triggered events are indicated with blue coloured cells

while cells that correspond to currently selected rules are highlighted in red.

Users are able to select whether they wish to view a compact representation of the

time line, where only intervals in which events were recorded are shown, or the full

grid. The thickness of the vertical lines between cells is used to indicate jumps in time

in the compact view, the cells of contiguous intervals being delineated by hairlines while

the cells of non-contiguous intervals are separated by thick lines. All cells in the full

time line view are contiguous and hence are delineated using hairlines. Figure 5.2(a)

presents a magnified view of the grid in which the effect of the compact view is more

visible. In contrast, Figure 5.2(b) shows a magnified view of a small subset of the same

time period displayed using the expanded view. The start of a new day is indicated

with a gap in the time line in both the compact and full view modes. Users are able to

view the exact date and time of an interval by positioning the mouse cursor over a cell,
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Figure 5.1: The visual interface highlighting the presence of selected rules
(top) on the event time line. The horizontal axis represents the date and time
of the intervals while the vertical axis represents the sensor events. The date
and time and the name of the sensor event that the mouse cursor is pointing
at is being displayed.

the time being indicated in a text box horizontally centered underneath the grid. If the

cell being pointed at represents a triggered sensor event then the name of that event

is also displayed in the text box. The screen capture in Figure 5.1, for example, shows

the descriptive name of the sensor event, and the date and time of the interval in which

it occurs, of the cell that the mouse cursor is presently pointed at. In this example, the

event represents the switching off of the stereo in the retiree subject’s den.

Cells are similarly partitioned on the vertical axis by the sensor events that they rep-

resent. Sensors are grouped by their location in the home with gaps on the grid delin-

eating rooms. Sensor events are further grouped by their textual description such that

all events related to one particular sensor, currently limited to “on” and “off” events

in our application, appear in contiguous cells whose boundary is drawn using hairlines.

Boundaries between the sensors in a room are delineated using thick horizontal lines.
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(a)

(b)

Figure 5.2: Magnified view of (a) the compact time line showing the sensor
events within a single room over a period of one day and (b) the expanded
view showing approximately three hours from the same room and period.
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Partitioning the sensor events in this way provides users with a clear overview of the

time and location of events being triggered and their relation to other sensors and

rooms.

The bottom portion of the interface is used to display meta information about the

data being displayed. The minimum support and growth thresholds, the interval size

and the intertransaction window size used to mine the rules are shown here. A text

box horizontally centered underneath the cell grid displays information about a cell

whenever the user positions the mouse cursor over it. This area also contains a slider

that allows the user to adjust the magnification factor of the grid and a check box with

which to toggle the compact time line representation.

5.2 Design Rationale

The interface design was motivated by a desire to provide users with an intuitive and

easy to use system for analysing the emergent IARs in the context of the original data.

The first logical step in the design was to map the rules back onto the original data

space so as to re-establish the context in which the behaviours occur.

Analysis of the levels of activity present in the data sets revealed the presence of many

regions of time in which no sensor events were recorded. For example, the amount of

activity present in the working professional subject data set, as a count of the number of

sensor events per five minute interval, is shown in Figure 5.3, Figure 5.4 and Figure 5.5.

Activity levels for the retiree subject is similarly shown in Figure 5.6, Figure 5.7 and

Figure 5.8. These show the presence of long periods of inactivity during the night for

both subjects as well as periods of inactivity during the day for the working professional.

The display of such periods of inactivity offer users negligible benefit when interpreting

the emergent rules, it being the presence of unusually frequent combinations of activities

and not their absence that is important and captured by the mining process. Providing

users with the ability to select a compact representation of the time line is therefore

logical given that users may consider the maximisation of the amount of information

displayed on screen more valuable than displaying these vacant intervals.

The elimination of the empty time intervals from the time line requires a method by

which the now non-linear passage of time can be highlighted. Thick vertical lines

and vertical hairlines were chosen as logical visual markers for the non-contiguous and

contiguous cell boundaries respectively. The inclusion of gaps on the time line was

found to be necessary in order to delineate between days and to prevent them from
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Figure 5.3: The number of sensor events triggered per five minute interval
over the first six days of data from the working professional subject data set.
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Figure 5.4: The number of sensor events triggered per five minute interval
over the days 7 to 8 of data from the working professional subject data set.
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Figure 5.5: The number of sensor events triggered per five minute interval
over the last four days of data from the working professional subject data set.
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Figure 5.6: The number of sensor events triggered per five minute interval
over the first six days of data from the retiree subject data set.
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Figure 5.7: The number of sensor events triggered per five minute interval
over days 7 to 8 of data from the retiree subject data set.
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Figure 5.8: The number of sensor events triggered per five minute interval
over the last four days of data from the retiree subject data set.
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melding together. A common complaint from users prior to the inclusion of these gaps

was that it was possible to lose one’s place in the grid when scrolling the time line view.

The decision to show the transaction intervals on the time line rather than the event

sequences was made to avoid a mismatch between the associative relationships modeled

by transactional mining and the event ordering implied by such an event time line. To

have done so would be counter-intuitive to users and introduce unnecessary complexity

in both the display and in the interpretation of the rules. It would also work against the

previous goal of displaying as much information on screen as possible with the compact

time line view.

Separate rows are used to display the state change events of the sensors. This may, at

first, appear to be an inefficient method of visualising the sensor states given that only

a single row per sensor is needed when colour or texture is used to represent the sensor

state. The use of multiple rows per sensor was, however, a conscious decision to allow

for future data sets where an arbitrary number of states may be assigned to a sensor.

A more sophisticated light switch may, for example, indicate whether it is in a state of

off, on or dimmed. The application of colour or texture to indicate such states is likely

to quickly become confusing as the number of sensor states within a home increases.

The problem is exacerbated when more than one state is assigned to a single event.

The aforementioned light switch sensor may, for instance, trigger both on and dimmed

events when it becomes activated.

Given that multiple event rows are assigned to the sensors, it naturally follows that

events should be grouped by their associated sensor. Thick horizontal lines are used

to visually mark these groupings. Having grouped the sensor events in this fashion,

the next logical step is to further group the sensors by their room location in order

to establish their spatial context. Gaps in the grid structure are used here to clearly

delineate the room groupings. Grouping the sensor events helps achieve a logical and

intuitive ordering of the sensors on the grid structure.

Users are allowed to select multiple rules from the emergent IAR table as more than

one rule is likely to describe an emergent behaviour. Cells belonging to different rules

describing the same behaviour can therefore be simultaneously highlighted.

The choice to provide meta information only about a single cell over which the user’s

mouse is positioned stems from the numerous number of sensor events that can be

displayed on screen. A textual overlay onto or adjacent to the grid for each and every

visible event would produce clutter and make the display difficult to discern at the lower

magnification levels. The use of the meta information text box is therefore a compro-
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mise between providing users with too much information and giving users the ability

to extract further information about the events and rules that they are investigating.

The resulting display is a compact time line representation that, when combined with

the sensor groupings, provides visual cues and reference points to the relative time

and location of items of interest while the meta information text box provides detailed

information about events the user wishes to focus on.

Finally, the shading of the red and blue colours used to paint triggered sensor events

and to highlight the emergent rules was made with consideration of colourblind users in

mind. The colours “Vermilion” and “Blue Sky” were chosen from the proposed colour

pallet of Okabe and Ito (2002). These colours are said to be unambiguous to people of

both full colour vision and of all types of colour blindness.

The final design is the culmination of a series of logical design steps and interaction

with users aimed at producing an easy to use and intuitive interface for the exploration

of emergent intertransaction association rules in the original spatio-temporal context

of the data.

5.3 Repeat Experimentation on Real World Data Sets

The visual interface for emergent IAR exploration was applied to the real world data

sets previously discussed in Section 4.3.3 and Section 4.3.4. Observations previously

made through manual inspection of the discovered rules and the event logs will, in this

section, be compared against those made using the visual tool. It was found that the

use of this tool helped attain greater insight into the emergent behaviours discovered,

and in a shorter period of time, than was possible to obtain through manual inspection

of the rules in the log file context.

Mining was performed with interval sizes of one to five minutes using one minute in-

crements. The sliding intertransaction window length was adjusted to maintain, as

closely as possible, a thirty minute window for each of the chosen interval sizes. Mining

using the four and five minute intervals generally provided more stable, noise free, re-

sults than the one to three minute intervals due to the limited amount of training data

available. The benefit of reduced noise was diminished somewhat with the increase

in the granularity of the results. Importantly, the cause of the vast majority of emer-

gent behaviours, whether valid or the result of a lack of historical data, was apparent

regardless of the interval size chosen.

134



5.3.1 Observations on the Working Professional Data Set

As in Chapter 4, intertransaction association rules were mined using a raw minimum

support threshold of α = 8 and a minimum growth of δ = 5 for both weeks of data.

The new interpretations of these rules, and any deviations from earlier observations,

are discussed.

Week One

A large group of emergent IARs related to a flurry of activity in the subject’s kitchen

were discovered in the third day from the first week of data. The discovered rules de-

scribe the temporal relationships of the kitchen drawer, cabinet and refrigerator span-

ning transaction intervals over a thirty minute period. This suggests that the length

of time in which these events frequently occur is unusual rather than the underlying

activity itself as only the minimal emergent rules are mined. These patterns do not,

however, appear to signify any anomalous behaviour given the overall context of kitchen

related activity being carried out. The interpretation of these rules concurs with the

observations previously made in Section 4.3.3. A screen capture of this kitchen activity

with all of these emergent associations highlighted is shown in Figure 5.9.

An abnormality does appear during this kitchen activity, however, in the form of a

repeated opening and closing of the kitchen door. The regularity, frequency and the

length of time over which this occurs is unusual. The lack of activity outside of the

kitchen reinforces the suspicion that a glitch with the door sensor has been discovered

here. The phenomenon is repeated again over an eight minute period early the next

day. Again, this interpretation concurs with observation made in Section 4.3.3. A

magnified view of the interface showing this behaviour using an interval length of two

minutes is shown in Figure 5.10.

The third and fourth set of rules of bathroom related events described for the first

week of data in Section 4.3.3 are readily classified as noise when viewed in their original

context using the interface.

Week Two

A significant portion of the emergent rules found in the second week again relate to

activity in the kitchen. Unlike the kitchen related rules from the first week, these

rules describe emergent relationships that are new combinations of kitchen sensors
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Figure 5.9: Visualisation of the flurry of kitchen activity on the third day of
the first week of the working professional data using a three minute transac-
tion interval. The discovered rules describe temporal relationships between the
kitchen drawer, cabinet and refrigerator not seen in the training data. Trig-
gered events are coloured in blue while events matching the emergent IARs are
coloured in red.
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Figure 5.10: Visualisation of the abnormal kitchen door activity using a two
minute transaction interval on the third day of the first week of the working
professional data. The regularity, frequency and length of time over which the
kitchen door is repeatedly opened and closed is unusual. Triggered events are
coloured in blue while events matching the emergent IARs are coloured in red.
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whose temporal relationship span only a few intervals. This suggests that the kitchen

activities in this week are more involved and that not enough historical data is available

to account for these patterns.

A lack of historical data also explains the emergent IARs describing the opening and

closing of the bathroom sink faucets one to two intervals after their previous use. This

behaviour, highlighted in Figure 5.11, is rarely seen in the first week where we see these

events within single transaction intervals without being repeated for some time.

A mundane change in the subject’s behaviour is apparent, however, with the use of

the bathroom door being significantly more frequent this week; the bathroom door is

rarely used in the first week.

The interpretation of all the rules from this week concur with the observations previ-

ously made in Section 4.3.3.

5.3.2 Observations on the Retiree Data Set

As in Section 4.3.4, the rules from the second subject were again mined using a minimum

support threshold of α = 6 and α = 8 for the first and second week respectively. A

minimum growth measurement of δ = 5 was required for both weeks of data. The new

interpretation of these rules, and any deviations from earlier observations, are again

discussed.

Week One

A noticeable change in the retiree subject’s use of the bathroom is evident on the

first morning in the first week. Here, we see a forty-five minute period in which the

bathroom door is repeatedly being opened and closed. The television in the living

room is operated and the microwave and the refrigerator in the kitchen are also accessed

during this time. In this context, the emergent IARs suggest that the subject is making

frequent short visits to the bathroom, a behaviour that is unusual and should warrant

further investigation. Although this behaviour was also present in the observations from

Section 4.3.4, the extent of the abnormality was not as apparent; this new behaviour

was previously dismissed as unusual but not worthy of further investigation. Figure 5.12

shows a screen capture of this behaviour highlighted on the interface. This discovery

highlights the difficulty of analysing the emergent associations using manual inspection

of the sensor event logs due to the overwhelming number of recorded events and the
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(a)

(b)

Figure 5.11: Visualisation of the opening and closing of the bathroom sink
faucets one to two minutes after their previous use on (a) days three to five and
on (b) days six to eight of the second week of the working professional. The
rules are shown using a three minute transaction interval. Triggered events are
coloured in blue while events matching the emergent IARs are coloured in red.
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linear format in which they are presented.

Emergent rules were discovered that describe the kitchen door being repeatedly opened

and closed throughout a twenty minute period on the second day. The behaviour we

expect to see is this door being left in one state for longer periods of time or to see it

being both opened and closed within a single time interval. This behaviour, depicted

in Figure 5.13, appears to be innocuous given the activity seen in the rest of the home.

The subject appears to be carrying out more kitchen related activity in this week than

in the next. This explains the discovery of a host of emergent IARs involving kitchen

sensor events. These patterns do not indicate any unusual behaviour, however. Rather,

they reinforce the notion that we do not possess enough historical data to account for

the wide variety of patterns present in normal kitchen behaviour. The same conclusion

was made through manual inspection of the emergent IARs and the event logs in

Section 4.3.4. Figure 5.14 shows these rules occurring for this week.

A behaviour that is unusual, however, is the frequent use of the television throughout

this week. This behaviour is unusual given that the subject rarely turns on the television

in the historical data set.

All of the above observations were previously discovered in Section 4.3.4. A new obser-

vation that previously went unnoticed, however, is an unusual pattern of toaster usage

on the first day of data from this week. Here, the toaster is seen to be repeatedly

toggled on and off over an eleven minute period in what appears to be the mundane

activity of making toast. This innocuous behaviour, seen in Figure 5.15, is emergent

due to the repetition of the toaster events over an unusually long interval.

Week Two

A prominent example of abnormal behaviour is apparent on the first day in the second

week of data. Here, emergent IARs highlight a malfunction in the hot and cold shower

faucet sensors as evident through the regular and repeated triggering of faucet events

over a forty-five minute interval. The theory that this behaviour is due to a hardware

glitch is further reinforced by the conspicuous absence of any further shower faucet

events for the remainder of the week. The absence of this sensor from the remainder

of the week went unnoticed in the observations in Section 4.3.4. Figure 5.16 shows the

day on which the malfunction occurs.

On the seventh day the subject seems to repeatedly enter and leave the butler’s pantry
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Figure 5.12: Visualisation of the abnormal bathroom activity using a two
minute transaction interval on the first day of the first week of the retiree
data. The subject is seen to repeatedly open and close the bathroom door over a
forty-five minute interval. Activity in the lounge room and the kitchen suggests
that frequent short visits to the bathroom are being made. Triggered events
are coloured in blue while events matching the emergent IARs are coloured in
red.

141



Figure 5.13: Visualisation of the innocuous emergent kitchen door behaviour
on the second day of the first week of the retiree data set shown on a two
minute transaction interval. The historical data sets suggests that the kitchen
door would normally remain in its open or closed state for longer periods of
time. Triggered events are coloured in blue while events matching the emergent
IARs are coloured in red.
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(a)

(b)

(c)

Figure 5.14: Visualisation of the kitchen related activity on (a) days one to
three, (b) days four to six and (c) days seven and eight of the first week of
the retiree data set. The presence of this emergent behaviour appears to be
caused by a lack of historical support. The behaviour is shown using a two
minute transaction interval. Triggered events are coloured in blue while events
matching the emergent IARs are coloured in red.
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Figure 5.15: Visualisation of the repetitive toaster usage on the first day
of the first week of the retiree data set shown using a one minute transac-
tion interval. Triggered events are coloured in blue while events matching the
emergent IARs are coloured in red.

144



Figure 5.16: Visualisation of the malfunctioning shower faucet sensors on
the first day of the second week of the retiree data set using a two minute
transaction interval. Continuous toggling of the state of these sensors and
their notable absence in the remainder of the data set reinforces the suspicion
that a significant fault has been detected here. Triggered events are coloured
in blue while events matching the emergent IARs are coloured in red.
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over a forty minute period. Figure 5.17 shows the light in the pantry being switched

on for a period of up to two minutes before being switched off again, a pattern that is

repeated every one or two intervals. The use of the pantry in this way is unusual; the

expected behaviour for this person is to have the pantry light on for a few minutes at

a time and then to not return again for several hours. We do not believe that this new

behaviour is abnormal, however.

The last emergent behaviour worth noting is an increase in the use of the drawer in the

subject’s home office. The drawer is used several times in short succession on days one

and three of this week yet it is only used once in the previous week.

The last two sets of rules concerning the kitchen cabinet previously discussed in the

second week of this subject in Section 4.3.3 are readily dismissible as kitchen activity

related noise when viewed in their original context.

5.3.3 Automatic Selection of the Intertransaction Sliding Window

Size Revisited

The heuristic previously introduced in Section 4.3.5 for automatically determining a

suitable intertransaction sliding window size will, in this section, be revisited to in-

vestigate whether its application to the five intervals used in the visual examination

of the emergent behaviour remains tenable. The number of rules discovered in both

weeks of data from the working professional and retiree subject will be investigated as

the window size is increased using the raw minimum support thresholds of α = 6 and

α = 8.

The hypothesis remains that it is possible to determine an optimal sliding window size

given an arbitrary data set, minimum support threshold and interval size by inspecting

the number of new rules being mined as the window size is increased and weighing

the benefit of any additional rules discovered with the additional computational cost

of mining.

Working Professional Data Set

The number of rules mined in the first week of the working professional data set using

the support threshold α = 6 is presented in Figure 5.18. Here we see that the number

of rules being returned using the one minute transaction interval tends to taper off

at around w = 35. Although they have not completely tapered off within the period
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Figure 5.17: Visualisation of the unusual access of the butler’s pantry on the
seventh day of the second week of the retiree data set using a two minute trans-
action interval. Triggered events are coloured in blue while events matching
the emergent IARs are coloured in red.
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plotted, the number of new rules being discovered using the two minute interval appears

to be declining from w = 35 onwards. The majority of the rules discovered using the

one and two minute intervals are hence found within sliding windows spanning thirty-

five and seventy minutes respectively. The three minute interval sees the number of

rules returned falling off at around w = 30, a period of ninety minutes. Similarly, the

four minute interval appears to taper off at w = 27, or 108 minutes, while the five

minute interval tapers off at w = 16, or eighty minutes.

The period of time covered by the rules discovered in the first week using the higher

support threshold of α = 8 in Figure 5.19 is slightly reduced when compared to the

lower support threshold. Rule discovery, as with the α = 6 threshold, for the one minute

interval continues to taper off at around w = 35 whereas the two minute interval now

begins to taper off at around w = 23, or forty-six minutes. The coverage afforded by the

three and four minute transaction intervals has likewise been slightly reduced. Here,

suitable window sizes for the three and four minute interval are w = 22, or sixty-six

minutes, and w = 17, or sixty-eight minutes. The rules returned with the five minute

interval appear to fall off at around w = 12, a period of sixty minutes.

The results from the second week of data using the α = 6 support threshold are shown

in Figure 5.20. In contrast to the results from the first week, suitable window sizes for

the one and two interval sizes appear to be relatively short. Rule discovery tapers off

quickly when a window size of w = 7 is reached using the one minute interval and at

w = 5 with the two minute interval. A suitable window size for the three minute interval

appears at circa w = 33, spanning a period of just under 100 minutes. Similarly, the

four and five minute intervals cover periods of approximately ninety-two and ninety-five

minutes with w = 23 and w = 19 respectively.

Mining the second week of data with α = 8 see similar results, shown in Figure 5.21, for

the one and two minute intervals. Here, suitable intertransaction window sizes appear

to be w = 7 for the one minute interval and w = 5 for the two minute interval. The

three minute interval appears to only cover a fifteen minute span and tapers off at

w = 5. The four and five minute intervals, however, continue to cover longer periods of

time. The number of rules retrieved using the four minute interval tapers off at around

w = 18, or seventy-two minutes, while the five minute interval falls off at around

w = 20, a window spanning a 100 minute period.

We see from these results that increases in the granularity of the transaction intervals

leads to an increase in both the number of rules being discovered and in the heuristi-

cally selected sliding window size. Larger transaction intervals increase the likelihood
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Figure 5.18: The number of rules discovered in the first week of the work-
ing professional data set using (a) one, (b) two, (c) three, (d) four and (e)
five minute transaction intervals as the intertransaction sliding window size is
increased. A raw minimum support threshold of α = 6 was used.
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Figure 5.19: The number of rules discovered in the first week of the work-
ing professional data set using (a) one, (b) two, (c) three, (d) four and (e)
five minute transaction intervals as the intertransaction sliding window size is
increased. A raw minimum support threshold of α = 8 was used.
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Figure 5.20: The number of rules discovered in the second week of the work-
ing professional data set using (a) one, (b) two, (c) three, (d) four and (e)
five minute transaction intervals as the intertransaction sliding window size is
increased. A raw minimum support threshold of α = 6 was used.
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of events, or items, being present in an interval and within the sliding window, directly

resulting in an increase in the number of IARs that meet the minimum support thresh-

old. The same effect is seen when the support level is reduced. The results also suggest

that the heuristic remains a viable means of automating the selection of the length of

the sliding window.

Retiree Data Set

Figure 5.22 shows the number of rules mined from the first week of the retiree data

set as the sliding window size is increased using the α = 6 support threshold. The

number of new rules being discovered can be seen to clearly taper off for each of the

five minute intervals. The one and two minute intervals are shown to taper off at w = 8

and w = 12 respectively while the coverage provided by the three minute interval is

longer at w = 7, or twenty-one minutes. The four minute interval is shown to taper

off at around w = 10 to cover a period of forty minutes. This same period of time is

covered by the five minute interval which is seen to taper off at w = 8.

Mining the first week of data at the higher support threshold of α = 8 again reveals an

earlier tapering off than at the α = 6 threshold. The heuristic continues to suggest a

window size of around w = 8 for the one minute interval while the two minute interval

tapers off after around fourteen minutes at w = 7. The period covered by the three, four

and five minute intervals has been significantly reduced, however. The three minute

interval now tapers off at circa w = 5, or fifteen minutes, while the number of new

rules found using the four and five minute intervals falls off at circa w = 6, or eighteen

minutes, and at w = 5, or twenty-five minutes, respectively.

Results from the second week of the retiree data set are presented in Figure 5.24. The

appearance of an unusually steep jump in the number of rules being discovered at

w = 6 for the one minute interval in Figure 5.24(a) is due to the many events recorded

by the malfunctioning shower faucet sensors on the first day of data. The length and

regularity with which these sensors are triggered causes all possible combinations of

associations of these events within the bounds of the sliding window size to be mined.

This effect is mitigated as the intervals become more granular and the number of

possible combinations is reduced. Figure 5.25 shows the number of rules being mined

from the second week of data with the malfunctioning sensors removed. The number

of rules being discovered for the one minute interval in Figure 5.25(a) is seen to have

returned to a steady decline in growth and the optimal window size has shifted from

w = 8 to w = 14.
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Figure 5.21: The number of rules discovered in the second week of the work-
ing professional data set using (a) one, (b) two, (c) three, (d) four and (e)
five minute transaction intervals as the intertransaction sliding window size is
increased. A raw minimum support threshold of α = 8 was used.
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Figure 5.22: The number of rules discovered in the first week of the retiree
data set using (a) one, (b) two, (c) three, (d) four and (e) five minute trans-
action intervals as the intertransaction sliding window size is increased. A raw
minimum support threshold of α = 6 was used.
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Figure 5.23: The number of rules discovered in the first week of the retiree
data set using (a) one, (b) two, (c) three, (d) four and (e) five minute trans-
action intervals as the intertransaction sliding window size is increased. A raw
minimum support threshold of α = 8 was used.
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The remainder of the intervals in both Figure 5.24 and in Figure 5.25 are seen to have

similar curves, the data set with the malfunctioning sensor removed exhibiting only a

marginal decrease in the number of rules found. The two minute interval is seen to

taper off at w = 16 for a window that spans thirty-two minutes while the growth in the

number of new rules found for the three, four and five minute intervals each appear to

fall off at w = 10.

Similar results are seen with α = 8 for the second week of data in Figure 5.26. Here

also, the anomalous shower faucet sensors cause a significant jump in the number of

rules mined at the one minute interval. The exponential growth seen in Figure 5.26(a)

appears at w = 4 compared to w = 6 at the lower support threshold. Figure 5.27 shows

the result of increasing the window length when the shower faucet sensors have been

removed. The curve in Figure 5.27(a) is seen to behave normally. The number of new

rules in Figure 5.27(a) is seen to taper off at w = 10 while those in Figure 5.26(a) taper

off at w = 7.

The curves for the two, three, four and five minute intervals taper off at the same times

in both Figure 5.26 and for Figure 5.27. Although the number of rules being found

here are lower than with the α = 6 support threshold, only the two minute interval

has shown a significant decrease in the period covered by tapering off at w = 6. The

remainder of the curves appear to fall off at w = 10, w = 9 and at w = 8 for each of

the three, four and five minute intervals respectively.

The results from the retiree subject data set show that both an increase in the gran-

ularity of the transaction intervals and a reduction of the minimum support threshold

continues to result in an increase in the length of the sliding window and in the number

of rules being mined. These results also again confirm the viability of the heuristic as

a technique for determining the size of the sliding window.

5.4 Conclusion

This chapter has introduced a novel visual data mining tool for exploring and analysing

emergent intertransaction associations in their original data space. The proposed inter-

face provides users with a grid representation showing the triggered sensors events on a

time line view. Users may select whether the grid is presented in a compact form, where

only intervals in which activity is recorded are displayed, or in its full form. Emergent

IARs are displayed in a table that can be ordered by the rule support measure, rule

growth or by rule similarity. Occurrences of rules that are selected in the table are
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Figure 5.24: The number of rules discovered in the second week of the retiree
data set using (a) one, (b) two, (c) three, (d) four and (e) five minute trans-
action intervals as the intertransaction sliding window size is increased. A raw
minimum support threshold of α = 6 was used.
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Figure 5.25: The number of rules discovered in the second week of the retiree
data set with the malfunctioning shower faucet sensor events removed using
(a) one, (b) two, (c) three, (d) four and (e) five minute transaction intervals as
the intertransaction sliding window size is increased. A raw minimum support
threshold of α = 6 was used.
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Figure 5.26: The number of rules discovered in the second week of the retiree
data set using (a) one, (b) two, (c) three, (d) four and (e) five minute trans-
action intervals as the intertransaction sliding window size is increased. A raw
minimum support threshold of α = 8 was used.
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Figure 5.27: The number of rules discovered in the second week of the retiree
data set with the malfunctioning shower sensor removed using (a) one, (b) two,
(c) three, (d) four and (e) five minute transaction intervals as the intertrans-
action sliding window size is increased. A raw minimum support threshold of
α = 8 was used.
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prominently highlighted on the grid view. It was shown that the design rationale is

the logical conclusion to the problem of visualising intertransaction associations in the

original data space.

Repeat experimentation on the real world data sets described in Chapter 4 revealed

that use of the interface provides a more intuitive, efficient and user friendly approach

to investigating emergent IARs than through manual inspection of the event log data.

The majority of the observations made on the real world data via the interface were

found to concur with the previous observations in Section 4.3.3 and Section 4.3.4 with

two notable additions.

It was revealed that the full extent of an anomalous pattern on the first day of data

from the first week of the retiree subject was previously not apparent. Through the

interface, it could be seen that the frequency, duration and time of day of the elderly

subject making short visits to the bathroom was highly abnormal and would warrant

further investigation. The interface also provided additional insight by confirming that

a suspected sensor malfunction in the second week of data from the retiree subject

was indeed a technical glitch by revealing that the sensor remained inactive for the

remainder of the week.

The optimal intertransaction sliding window size heuristic was revisited. Investigation

revealed that the heuristic remains a feasible technique for automatically selecting a

suitable sliding window size given an arbitrary data set, a minimum support threshold

and interval size.
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Chapter 6

Conclusion

This thesis has presented techniques for the detection of abnormality in human be-

haviour. Two different approaches originating from the areas of stochastic models and

data mining were investigated.

The application of stochastic models for learning patterns of normality with which

new observational data gathered by a visual tracking system could be examined was

presented in Chapter 3. Investigation into the use of the Hierarchical Hidden Markov

Model (HHMM) showed that the model could be applied to the training of multi-level

models of human behaviour. Experimentation demonstrated that models trained on

subpatterns of behaviour were able to learn state transitions whose structure closely

resembles a hierarchical decomposition of the activities present in the training data.

Further experimentation demonstrated that the HHMM could also be employed as

a classifier of normal activities. The resulting models could, therefore, be reused in

the training of higher level models that are able to encompass longer term human

behaviours.

Next, an investigation into the importance of incorporating duration into models of

human behaviour revealed that the Hidden Markov Model (HMM) and, by extension,

the HHMM were unable to be used as reliable classifiers of normal behaviour or in the

detection of abnormality when the ordering of activity within observation sequences

remained the same yet differed in the duration of the activities. A comparison be-

tween the HMM, the left-right constrained HMM, the ESD-HMM and the left-right

constrained ESD-HMM showed that only the latter model could be reliably applied

as both a classifier of normal behaviour and be used to detect longer term durational

abnormality. An extension to the ESD-HMM in which the state durations are known
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was then introduced. The new model, dubbed the Observed Time Indices ESD-HMM

(OTI ESD-HMM), uses an observation signal that has been augmented with pressure

mat sensor information to exploit known state transition times in model training and

inferencing. Experimentation revealed that the classification and abnormality detec-

tion performance of the OTI ESD-HMM was comparable with that of the standard

ESD-HMM with the added benefit of being able to encode sequences of activity such

that the observation signal could be faithfully reproduced when a generative process is

applied to the trained model.

Finally, a comparison between the HMM and the OTI ESD-HMM was made using data

obtained by deploying the visual tracking system into the home of a volunteer subject.

Similar results between the models were documented for both the classification and

abnormality detection tasks. The OTI ESD-HMM demonstrated improved sensitivity

to abnormality compared to the HMM. Its advantage was diminished, however, by in-

creased susceptibility to noise; the harsh lighting conditions of the environment making

the tracking of the subject difficult. It was demonstrated that the OTI ESD-HMM

was able to reliably detect long term durational anomalies when the duration of an

otherwise normal activity sequence was artificially increased. The HMM was unable to

detect this type of abnormality.

The data mining component of the thesis began in Chapter 4. A novel application of

Intertransaction Association Rule (IAR) mining that enables emergent behaviours to be

discovered from state change sensor event logs was introduced. Emergent behaviours

are those that are new or occur with unusual frequency given some historical data

set. Extended Frequent Pattern Growth (EFP-Growth), a new algorithm for IAR min-

ing, and its accompanying Extended Frequent Pattern Tree (EFP-Tree) data structure

were introduced as extensions to the Frequent Pattern Growth (FP-Growth) algorithm

and the Frequent Pattern Tree (FP-Tree) structure. EFP-Growth allows IARs to be

efficiently mined by avoiding the computationally expensive candidate generation-then-

test approach employed in existing IAR mining algorithms. Experimental results on

both synthetic and real world data showed EFP-Growth outperforming the First Intra

Then Inter (FITI) algorithm with an order of magnitude improvement in computational

complexity. This was especially the case on the synthetic dense data sets where a high

number of frequent items rendered FITI unable to discard unnecessary data early on

in the mining process. Analysis of the emergent IARs found in the real world data

sets from two test subjects (people) showed that new and changing behaviours could

be detected with several examples of sensor malfunctions being identified.

Chapter 5 continued the work into analysis of emergent behaviours with the introduc-

163



tion of a visual data mining tool for exploring emergent IARs. The visual interface is

unique in that it is the first such tool for IAR analysis in that it maps discovered IARs

back onto the original data space. This allows users to visually investigate the signifi-

cance and meaning of discovered rules in the context of the sensor event data without

the need for laborious trawling through the event logs. Repeat experimentation showed

that the behaviours identified in previous experimentation in Chapter 4 could be iden-

tified more easily and in less time than is possible through manual inspection of the

sensor event logs. New insight was gained into the importance of one particular emer-

gent IAR with the discovery of a behaviour that would warrant investigation into the

health of an elderly subject by outside carers.

6.1 Future Directions

Several limiting factors were observed in the investigation of the suitability of the

HHMM as a tool for learning hierarchical models of human behaviour. These were:

cubic complexity with respect to the length of the observation sequence, numerical

underflow constraints due to lack of scaling in implementations of the model and a

lack of explicit duration modelling. The issue of numerical underflow has since been

resolved in Phung (2005) while a special case of a two layer HHMM in which duration

modelling is incorporated has been presented with the introduction of the Switching

Hidden Semi-Markov Model (S-HSMM) (Duong et al., 2005). This invites future work

into a general case HHMM in which duration is modelled at every layer in the hierarchy.

The issue of computational complexity may be resolved by representing the resulting

model as a Dynamic Bayesian Network (DBN) and employing the methodology used

in Murphy and Paskin (2001) to trade a reduction in computational complexity with

an increase in memory usage. Such work may lead to complex hierarchical models

of human behaviour that suffer none of the limitations of the original HHMM while

retaining the ability to properly accommodate duration.

Opportunity for further work also exists by building upon the work undertaken in emer-

gent behaviour mining. To wit; the benefit of intertransaction association rules lies in

their ability to express event associations within and between fixed time intervals.

However, discrete time intervals impose an artificial segmentation of time. A more

expressive semantic for representing relations based on the interval in which events,

actions or activities occur may be offered by Allen’s temporal interval logic (Allen,

1983). This allows relations such as “before”, “during”, “in between” and “after” to

describe the temporal relationships between observed activities or states of objects.
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Höppner and Klawonn (2002) have, for example, used this logic to extend frequent

episode mining to discover more expressive rule relationships. The relative nature of

such temporal relationships provides flexibility yet also implies imprecision; no quanti-

tative feature is assigned to relations so a rule “turns light out in between getting into

bed after showering” may be interpreted differently than “turns light out in between

getting into bed approximately ten hours after showering”. In the former, it is implied

that a subject has gone to bed shortly after showering in the evening while the latter

implies the subject has gone to bed in the evening after showering in the morning. A

hybrid technique that incorporates Allen’s temporal interval logic with intertransaction

mining may be of use here.

The direction of such work is closely aligned to multigranular temporal mining which

has seen an extension of frequent episode mining that introduced temporal constraints

to relationship between events (Bettini et al., 1998a,b). The granularity of these con-

straints can be arbitrarily specified by a user given knowledge about the problem do-

main. Given an array of feature rich sensors, it may be possible to apply or extend

these methods to discover rules which capture richer relationships between events and

activities than is currently offered by IAR mining.
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Appendix A

Hierarchical HMM State

Transition and Emission

Likelihoods

For completeness, this appendix lists the learned state transition likelihoods and emis-

sion probabilities of the HHMM models depicted in Section 3.1.2.

A.1 Kitchen Models

A.1.1 “Food Preparation First”

The state transition likelihoods and the emission probabilities for the “food preparation

first” class model in Figure 3.3 are presented here in Tables A.1–A.11.

Table A.1: Initial state likelihoods stored at the root node in the “food
preparation first” model.

Destination

q2
1 q2

2 q2
3

0 0 1
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Table A.2: State transition likelihoods governing the second layer of the “food
preparation first” model stored at the root node.

Destination

Source q2
1 q2

2 q2
3 q2

end

q2
1 0.0000 0.0000 1.0000 0.0000

q2
2 1.0000 0.0000 0.0000 0.0000

q2
3 0.0000 0.5000 0.0000 0.5000

Table A.3: Initial state likelihoods for the “cooking” submodel in the “food
preparation first” model stored at state q21.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0889 0.0000 0.0000 0.0000 0.0000 0.9111

Table A.4: State transition likelihoods governing the production state chil-
dren of the “cooking” submodel in the “food preparation first” model stored
at state q21.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.5342 0.0000 0.0000 0.4658 0.0000 0.0000 0.0000

q3
2 0.0000 0.3374 0.6617 0.0001 0.0008 0.0000 0.0000

q3
3 0.0000 0.1462 0.2316 0.0000 0.6402 0.0000 0.0000

q3
4 0.0000 0.4654 0.0008 0.5338 0.0000 0.0000 0.0000

q3
5 0.0000 0.0000 0.0000 0.0000 0.5342 0.0000 0.4658

q3
6 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table A.5: Emission likelihoods of the production state children of the “cook-
ing” submodel in the “food preparation first” model stored at the children
states of q21.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
2 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
4 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
5 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
6 0.0000 0.0091 0.0000 0.9909 0.0000 0.0000
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Table A.6: Initial state likelihoods for the “fridge & food prep” submodel in
the “food preparation first” model stored at state q22.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0654 0.0000 0.0000 0.0000 0.9346 0.0000

Table A.7: State transition likelihoods governing the production state chil-
dren of the “fridge & food prep” submodel in the “food preparation first”
model stored at state q22 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.7330 0.0000 0.0000 0.0000 0.2413 0.0257 0.0000

q3
2 0.0619 0.0283 0.0000 0.0995 0.0000 0.0000 0.8104

q3
3 0.0970 0.0000 0.2608 0.0318 0.0000 0.6104 0.0000

q3
4 0.0000 0.0000 0.4476 0.5407 0.0000 0.0000 0.0116

q3
5 0.0283 0.1419 0.0000 0.7579 0.0719 0.0000 0.0000

q3
6 0.3568 0.1649 0.3001 0.0004 0.0000 0.0019 0.1758

Table A.8: Emission likelihoods of the production state children of the “fridge
& food prep” submodel in the “food preparation first” model stored at the
children states of q22 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
2 0.0000 0.0000 0.1544 0.8456 0.0000 0.0000

q3
3 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
4 0.0000 0.9996 0.0000 0.0004 0.0000 0.0000

q3
5 0.0000 0.0000 0.0000 0.0300 0.9042 0.0658

q3
6 0.0000 0.9023 0.0274 0.0000 0.0429 0.0274

Table A.9: Initial state likelihoods for the “enter/exit” submodel in the “food
preparation first” model stored at state q23.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0991 0.0641 0.0000 0.5566 0.2803
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Table A.10: State transition likelihoods governing the production state chil-
dren of the “enter/exit” submodel in the “food preparation first” model stored
at state q23.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0618 0.0000 0.0000 0.9382 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.5255 0.0000 0.4745 0.0000 0.0000

q3
3 0.9555 0.0000 0.0445 0.0000 0.0000 0.0000 0.0000

q3
4 0.0000 0.0000 0.0000 0.0303 0.0000 0.0000 0.9697

q3
5 0.1058 0.0000 0.8911 0.0000 0.0031 0.0000 0.0000

q3
6 0.0000 0.0000 0.5255 0.0000 0.4745 0.0000 0.0000

Table A.11: Emission likelihoods of the production state children of the “en-
ter/exit” submodel in the “food preparation first” model stored at the children
states of q23.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
2 0.0000 0.0000 0.0000 0.1090 0.8910 0.0000

q3
3 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
4 0.0692 0.0000 0.0000 0.0000 0.0000 0.9308

q3
5 0.0000 0.0000 0.0000 0.2990 0.0000 0.9701

q3
6 0.0000 0.0000 0.0000 0.1682 0.8318 0.0000
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A.1.2 “Washing Dishes First”

The state transition likelihoods and the emission probabilities for the “washing dishes

first” class model in Figure 3.4 are presented here in Tables A.12–A.22.

Table A.12: Initial state likelihoods stored at the root node in the “washing
dishes first” model.

Destination

q2
1 q2

2 q2
3

0.0000 1.0000 0.0000

Table A.13: State transition likelihoods governing the second layer of the
“washing dishes first” model stored at the root node.

Destination

Source q2
1 q2

2 q2
3 q2

end

q2
1 0.0000 0.0000 1.0000 0.0000

q2
2 0.5000 0.0000 0.0000 0.5000

q2
3 0.0000 1.0000 0.0000 0.0000

Table A.14: Initial state likelihoods for the “cooking” submodel in the “wash-
ing dishes first” model stored at the children states of q21.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
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Table A.15: State transition likelihoods governing the production state chil-
dren of the “cooking” submodel in the “washing dishes first” model stored at
state q21.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.4651 0.3421 0.0000 0.1667 0.0261 0.0000 0.0000

q3
2 0.0007 0.4743 0.0000 0.0000 0.5250 0.0000 0.0000

q3
3 0.0000 0.0000 0.0713 0.0010 0.0000 0.9277 0.0000

q3
4 0.4031 0.0320 0.0000 0.5649 0.0000 0.0000 0.0000

q3
5 0.0000 0.1164 0.0000 0.0000 0.5708 0.0000 0.3128

q3
6 0.0000 0.0000 0.0000 0.9536 0.0000 0.0464 0.0000

Table A.16: Emission likelihoods of the production state children of the
“cooking” submodel in the “washing dishes first” model stored at the children
states of q21.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
3 0.0000 0.1000 0.0000 0.2632 0.4703 0.1663

q3
4 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
5 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
6 0.0000 0.0000 0.3383 0.6617 0.0000 0.0000

Table A.17: Initial state likelihoods for the “wash dishes” submodel in the
“washing dishes first” model stored at state q22.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.2500 0.7500 0.0000 0.0000 0.0000
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Table A.18: State transition likelihoods governing the production state chil-
dren of the “wash dishes” submodel in the “washing dishes first” model stored
at state q22.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0045 0.0000 0.0000 0.0065 0.0000 0.0000 0.9890

q3
2 0.0475 0.0000 0.7328 0.0000 0.1790 0.0407 0.0000

q3
3 0.0001 0.0000 0.1613 0.0001 0.8362 0.0023 0.0000

q3
4 0.4180 0.0000 0.0000 0.0429 0.0000 0.0000 0.5391

q3
5 0.1459 0.0000 0.0000 0.6147 0.1879 0.0000 0.0515

q3
6 0.0911 0.0000 0.0000 0.0227 0.7321 0.0777 0.0764

Table A.19: Emission likelihoods of the production state children of the
“wash dishes” submodel in the “washing dishes first” model stored at the
children states of q22 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
2 0.0000 0.0000 0.0000 0.2857 0.7143 0.0000

q3
3 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
4 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
5 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
6 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table A.20: Initial state likelihoods for the “enter/exit” submodel in the
“washing dishes first” model stored at state q23.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
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Table A.21: State transition likelihoods governing the production state chil-
dren of the “enter/exit” submodel in the “washing dishes first” model stored
at state q23.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.6890 0.0000 0.1285 0.1824 0.0000 0.0000 0.0000

q3
2 0.9435 0.0565 0.0000 0.0000 0.0000 0.0000 0.0000

q3
3 0.0756 0.0000 0.4267 0.2485 0.2097 0.0395 0.0000

q3
4 0.1425 0.0000 0.5377 0.1403 0.0264 0.1531 0.0000

q3
5 0.0000 0.0000 0.0000 0.0000 0.6175 0.1840 0.1984

q3
6 0.0000 0.0000 0.0002 0.0000 0.9622 0.0011 0.0366

Table A.22: Emission likelihoods of the production state children of the “en-
ter/exit” submodel in the “washing dishes first” model stored at the children
states of q23.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.3583 0.6417 0.0000 0.0000

q3
3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
4 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
5 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
6 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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A.1.3 “Washing Dishes and Preparing Food”

The state transition likelihoods and the emission probabilities for the “washing dishes

and preparing food” class model in Figure 3.5 are presented here in Tables A.23–A.33.

Table A.23: Initial state likelihoods stored at the root node in the “washing
dishes and preparing food” model.

Destination

q2
1 q2

2 q2
3

1.0000 0.0000 0.0000

Table A.24: State transition likelihoods governing the second layer of the
“washing dishes and preparing food” model stored at the root node.

Destination

Source q2
1 q2

2 q2
3 q2

end

q2
1 0.0000 0.5119 0.0000 0.4881

q2
2 0.0348 0.1267 0.8386 0.0000

q2
3 1.0000 0.0000 0.0000 0.0000

Table A.25: Initial state likelihoods for the “enter/exit and wash dishes”
submodel in the “washing dishes and preparing food” model stored at state q21.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0238 0.0000 0.0000 0.0000 0.9762 0.0000
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Table A.26: State transition likelihoods governing the production state chil-
dren of the “enter/exit and wash dishes” submodel in the “washing dishes and
preparing food” model stored at state q21.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.7046 0.0000 0.2954 0.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
3 0.0000 0.0000 0.7046 0.0000 0.0000 0.0000 0.2954

q3
4 0.0000 0.2512 0.0000 0.4976 0.0000 0.0000 0.2512

q3
5 0.0000 0.0000 0.0000 0.6875 0.3125 0.0000 0.0000

q3
6 0.9530 0.0000 0.0000 0.0000 0.0000 0.0470 0.0000

Table A.27: Emission likelihoods of the production state children of the
“enter/exit and wash dishes” submodel in the “washing dishes and preparing
food” model stored at the children states of q21.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.0000 0.3737 0.5000 0.1262

q3
3 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
4 0.0175 0.0000 0.0000 0.0000 0.0000 0.9825

q3
5 0.0000 0.0000 0.0000 0.0363 0.1454 0.8183

q3
6 0.0000 0.0000 0.0922 0.9078 0.0000 0.0000

Table A.28: Initial state likelihoods for the “food prep” submodel in the
“washing dishes and preparing food” model stored at state q22 .

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.4000 0.1492 0.0315 0.0000 0.0746 0.3447
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Table A.29: State transition likelihoods governing the production state chil-
dren of the “food prep” submodel in the “washing dishes and preparing food”
model stored at state q22 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0000 0.2224 0.0553 0.0000 0.2145 0.0000 0.5077

q3
2 0.0007 0.1362 0.4077 0.4212 0.0000 0.0342 0.0000

q3
3 0.0433 0.0692 0.0874 0.7816 0.0004 0.0180 0.0001

q3
4 0.0005 0.0177 0.0119 0.3829 0.2946 0.0280 0.2645

q3
5 0.0000 0.0393 0.0523 0.0000 0.7775 0.1309 0.0000

q3
6 0.0904 0.4819 0.1494 0.0218 0.0000 0.2504 0.0000

Table A.30: Emission likelihoods of the production state children of the “food
prep” submodel in the “washing dishes and preparing food” model stored at
the children states of q22.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.0000 0.3737 0.5000 0.1262

q3
3 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
4 0.1750 0.0000 0.0000 0.0000 0.0000 0.9825

q3
5 0.0000 0.0000 0.0000 0.0363 0.1454 0.8183

q3
6 0.0000 0.0000 0.0922 0.9078 0.0000 0.0000

Table A.31: Initial state likelihoods for the “cooking” submodel in the “wash-
ing dishes and preparing food” model stored at state q23.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
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Table A.32: State transition likelihoods governing the production state chil-
dren of the “cooking” submodel in the “washing dishes and preparing food”
model stored at state q23 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.3658 0.0716 0.1500 0.2429 0.0000 0.1697 0.0000

q3
2 0.2301 0.5512 0.2187 0.0000 0.0000 0.0000 0.0000

q3
3 0.3718 0.0839 0.2516 0.1393 0.0000 0.1534 0.0000

q3
4 0.0001 0.0000 0.0001 0.2488 0.0000 0.5138 0.2372

q3
5 0.0000 0.9798 0.0000 0.0000 0.0202 0.0000 0.0000

q3
6 0.0001 0.0000 0.0000 0.2636 0.0000 0.3655 0.3699

Table A.33: Emission likelihoods of the production state children of the
“cooking” submodel in the “washing dishes and preparing food” model stored
at the children states of q23.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
2 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
4 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
5 0.0002 0.0717 0.0000 0.9281 0.0000 0.0000

q3
6 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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A.1.4 “Round Robin”

The state transition likelihoods and the emission probabilities for the “round robin”

class model in Figure 3.6 are presented here in Tables A.34–A.44.

Table A.34: Initial state likelihoods stored at the root node in the “round
robin” model.

Destination

q2
1 q2

2 q2
3

0.0000 0.0000 1.0000

Table A.35: State transition likelihoods governing the second layer of the
“round robin” model stored at the root node.

Destination

Source q2
1 q2

2 q2
3 q2

end

q2
1 0.0000 0.0000 1.0000 0.0000

q2
2 1.0000 0.0000 0.0000 0.0000

q2
3 0.0000 0.5000 0.0000 0.5000

Table A.36: Initial state likelihoods for the “cooking” submodel in the “round
robin” model stored at state q21.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.9964 0.0000 0.0000 0.0000 0.0036
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Table A.37: State transition likelihoods governing the production state chil-
dren of the “cooking” submodel in the “round robin” model stored at state
q21.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.5900 0.0000 0.3777 0.0000 0.0321 0.0000 0.0002

q3
2 0.0000 0.0000 0.0000 0.0003 0.0000 0.9997 0.0000

q3
3 0.0000 0.0000 0.1055 0.0000 0.0000 0.0000 0.8945

q3
4 0.0000 0.0000 0.0000 0.6459 0.3541 0.0000 0.0000

q3
5 0.4164 0.0000 0.0000 0.0000 0.5831 0.0000 0.0000

q3
6 0.0000 0.0000 0.0000 0.8694 0.0000 0.1306 0.0000

Table A.38: Emission likelihoods of the production state children of the
“cooking” submodel in the “round robin” model stored at the children states
of q21 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
2 0.0732 0.0000 0.3098 0.6170 0.0000 0.0000

q3
3 0.6277 0.0000 0.0000 0.1861 0.1861 0.0000

q3
4 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
5 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
6 0.9135 0.0000 0.0000 0.0865 0.0000 0.0000

Table A.39: Initial state likelihoods for the “food prep” submodel in the
“round robin” model stored at state q22.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
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Table A.40: State transition likelihoods governing the production state chil-
dren of the “food prep” submodel in the “round robin” model stored at state
q22.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.8277 0.0000 0.0000 0.0000 0.0000 0.0000 0.1723

q3
2 0.0000 0.7523 0.0000 0.2477 0.0000 0.0000 0.0000

q3
3 0.8571 0.0714 0.0714 0.0000 0.0000 0.0000 0.0000

q3
4 0.0000 0.0000 0.0000 0.1116 0.0000 0.8884 0.0000

q3
5 0.2781 0.0360 0.3230 0.2919 0.0710 0.0000 0.0000

q3
6 0.1245 0.0000 0.0000 0.0000 0.7640 0.1115 0.0000

Table A.41: Emission likelihoods of the production state children of the “food
prep” submodel in the “round robin” model stored at the children states of q22.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
3 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

q3
4 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
5 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
6 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

Table A.42: Initial state likelihoods for the “enter/exit via stove” submodel
in the “round robin” model stored at state q23 .

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
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Table A.43: State transition likelihoods governing the production state chil-
dren of the “enter/exit via stove” submodel in the “round robin” model stored
at state q23.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.1568 0.0000 0.8432 0.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.3620 0.0000 0.0000 0.3190 0.0000 0.3190

q3
3 0.0000 0.0000 0.1568 0.0000 0.0000 0.8432 0.0000

q3
4 0.0000 0.5919 0.0000 0.4081 0.0000 0.0000 0.0000

q3
5 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
6 0.0478 0.0000 0.0000 0.0000 0.0000 0.1350 0.8173

Table A.44: Emission likelihoods of the production state children of the
“enter/exit via stove” submodel in the “round robin” model stored at the
children states of q23 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.0000 0.0244 0.1348 0.8408

q3
3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
4 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
5 0.3636 0.0000 0.0000 0.4223 0.2141 0.0000

q3
6 0.6802 0.0000 0.0000 0.3198 0.0000 0.0000
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A.2 Lounge Room Models

A.2.1 “Watch Television”

The state transition likelihoods and the emission probabilities for the “watch television”

class model in Figure 3.7 are presented here in Tables A.45–A.55.

Table A.45: Initial state likelihoods stored at the root node in the “watch
television” model.

Destination

q2
1 q2

2 q2
3

0.0000 1.0000 0.0000

Table A.46: State transition likelihoods governing the second layer of the
“watch television” model stored at the root node.

Destination

Source q2
1 q2

2 q2
3 q2

end

q2
1 0.0000 0.0000 0.5119 0.4881

q2
2 1.0000 0.0000 0.0000 0.0000

q2
3 0.8845 0.0000 0.1155 0.0000

Table A.47: Initial state likelihoods for the “walk across room / exit” sub-
model in the “watch television” model stored at state q21.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.1787 0.0000 0.0000 0.0000 0.8213
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Table A.48: State transition likelihoods governing the production state chil-
dren of the “walk across room / exit” submodel in the “watch television” model
stored at state q21 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.6845 0.0000 0.0000 0.0000 0.0000 0.0000 0.3155

q3
2 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
3 0.0000 0.0000 0.2895 0.0907 0.5730 0.0000 0.0468

q3
4 0.0000 0.0000 0.7588 0.2442 0.0000 0.0000 0.0000

q3
5 0.5214 0.0000 0.0000 0.0000 0.0000 0.0000 0.4786

q3
6 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Table A.49: Emission likelihoods of the production state children of the “walk
across room / exit” submodel in the “watch television” model stored at the
children states of q21 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
2 0.0103 0.0000 0.0000 0.9897 0.0000 0.0000

q3
3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
4 0.9806 0.0000 0.0000 0.0194 0.0000 0.0000

q3
5 0.4795 0.0000 0.0000 0.4090 0.1115 0.0000

q3
6 0.4599 0.0000 0.0000 0.5401 0.0000 0.0000

Table A.50: Initial state likelihoods for the “enter” submodel in the “watch
television” model stored at state q22.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
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Table A.51: State transition likelihoods governing the production state chil-
dren of the “enter” submodel in the “watch television” model stored at state
q22.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0000 0.7857 0.0000 0.0000 0.0000 0.0000 0.2143

q3
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
3 0.0000 0.0000 0.0000 0.0000 0.2206 0.7794 0.0000

q3
4 0.0000 0.7875 0.0000 0.0000 0.0000 0.0000 0.2125

q3
5 0.1241 0.1350 0.0000 0.7408 0.0000 0.0000 0.0000

q3
6 0.7704 0.1350 0.0000 0.0946 0.0000 0.0000 0.0000

Table A.52: Emission likelihoods of the production state children of the
“enter” submodel in the “watch television” model stored at the children states
of q22 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
2 0.0000 0.0000 0.0000 0.0000 0.4205 0.5795

q3
3 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
4 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
5 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
6 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table A.53: Initial state likelihoods for the “watch TV” submodel in the
“watch television” model stored at state q23.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 0.0075 0.0000 0.0000 0.9925
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Table A.54: State transition likelihoods governing the production state chil-
dren of the “watch TV” submodel in the “watch television” model stored at
state q23.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.5128 0.4368 0.0291 0.0000 0.0000 0.0118 0.0000

q3
2 0.0089 0.6789 0.0000 0.0430 0.2691 0.0000 0.0000

q3
3 0.3828 0.1232 0.1623 0.0000 0.0000 0.3316 0.0000

q3
4 0.0002 0.0223 0.0000 0.1766 0.3659 0.0000 0.4349

q3
5 0.0004 0.0164 0.0000 0.5972 0.3035 0.0000 0.0825

q3
6 0.1102 0.0110 0.3200 0.0000 0.0000 0.5589 0.0000

Table A.55: Emission likelihoods of the production state children of the
“watch TV” submodel in the “watch television” model stored at the children
states of q23.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
3 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
4 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
5 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
6 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
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A.2.2 “Read Book on Couch”

The state transition likelihoods and the emission probabilities for the “read book on

couch” class model in Figure 3.8 are presented here in Tables A.56–A.66.

Table A.56: Initial state likelihoods stored at the root node in the “read book
on couch” model.

Destination

q2
1 q2

2 q2
3

0.0000 1.0000 0.0000

Table A.57: State transition likelihoods governing the second layer of the
“read book on couch” model stored at the root node.

Destination

Source q2
1 q2

2 q2
3 q2

end

q2
1 0.0000 0.0357 0.9643 0.0000

q2
2 1.0000 0.0000 0.0000 0.0000

q2
3 0.0000 0.0000 0.0000 1.0000

Table A.58: Initial state likelihoods for the “read on couch” submodel in the
“read book on couch” model stored at state q21.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 0.9286 0.0000 0.0000 0.0714
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Table A.59: State transition likelihoods governing the production state chil-
dren of the “read on couch” submodel in the “read book on couch” model
stored at state q21 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.3944 0.3384 0.0000 0.1397 0.1274 0.0000 0.0000

q3
2 0.0000 0.7723 0.0000 0.0000 0.0000 0.0000 0.2277

q3
3 0.0000 0.0000 0.2143 0.0000 0.0006 0.7851 0.0000

q3
4 0.2581 0.2317 0.0000 0.4009 0.1086 0.0007 0.0000

q3
5 0.2478 0.0014 0.0000 0.3244 0.4127 0.0136 0.0000

q3
6 0.0005 0.0000 0.0000 0.0091 0.2449 0.7455 0.0000

Table A.60: Emission likelihoods of the production state children of the “read
on couch” submodel in the “read book on couch” model stored at the children
states of q21.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
3 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

q3
4 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
5 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
6 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Table A.61: Initial state likelihoods for the “enter via bookcase” submodel
in the “read book on couch” model stored at state q22 .

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0357 0.0000 0.0000 0.0000 0.0000 0.9643
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Table A.62: State transition likelihoods governing the production state chil-
dren of the “enter via bookcase” submodel in the “read book on couch” model
stored at state q22 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0000 0.6512 0.0000 0.0000 0.0000 0.3488 0.0000

q3
2 0.0000 0.6317 0.0000 0.3683 0.0000 0.0000 0.0000

q3
3 0.0000 0.0000 0.6321 0.0000 0.0000 0.0000 0.3679

q3
4 0.0000 0.0001 0.3682 0.6317 0.0000 0.0000 0.0000

q3
5 0.0260 0.6381 0.0000 0.0000 0.3359 0.0000 0.0000

q3
6 0.0000 0.1633 0.0000 0.0000 0.2600 0.5767 0.0000

Table A.63: Emission likelihoods of the production state children of the
“enter via bookcase” submodel in the “read book on couch” model stored at
the children states of q22.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
3 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
4 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
5 0.1252 0.0000 0.0000 0.0000 0.0000 0.8748

q3
6 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table A.64: Initial state likelihoods for the “exit via bookcase” submodel in
the “read book on couch” model stored at state q23 .

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
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Table A.65: State transition likelihoods governing the production state chil-
dren of the “exit via bookcase” submodel in the “read book on couch” model
stored at state q23 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0304 0.7746 0.0000 0.0000 0.0000 0.1950 0.0000

q3
2 0.1890 0.0090 0.0000 0.0000 0.1908 0.6112 0.0000

q3
3 0.7381 0.0000 0.2619 0.0000 0.0000 0.0000 0.0000

q3
4 0.0000 0.0000 0.0000 0.1096 0.0000 0.0000 0.8904

q3
5 0.0000 0.0000 0.0000 0.8904 0.1096 0.0000 0.0000

q3
6 0.0000 0.0000 0.0000 0.0000 0.9996 0.0004 0.0000

Table A.66: Emission likelihoods of the production state children of the
“exit via bookcase” submodel in the “read book on couch” model stored at the
children states of q23 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0444 0.0000 0.0000 0.0000 0.9556 0.0000

q3
2 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
3 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

q3
4 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
5 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
6 0.0000 0.0000 0.0000 0.0000 0.2276 0.7724
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A.2.3 “Eat Dinner”

The state transition likelihoods and the emission probabilities for the “eat dinner” class

model in Figure 3.9 are presented here in Tables A.67–A.77.

Table A.67: Initial state likelihoods stored at the root node in the “eat
dinner” model.

Destination

q2
1 q2

2 q2
3

1.0000 0.0000 0.0000

Table A.68: State transition likelihoods governing the second layer of the
“eat dinner” model stored at the root node.

Destination

Source q2
1 q2

2 q2
3 q2

end

q2
1 0.0000 0.5000 0.0000 0.5000

q2
2 0.0000 0.0000 1.0000 0.0000

q2
3 0.9286 0.0714 0.0000 0.0000

Table A.69: Initial state likelihoods for the “enter/exit” submodel in the “eat
dinner” model stored at state q21.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
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Table A.70: State transition likelihoods governing the production state chil-
dren of the “enter/exit” submodel in the “eat dinner” model stored at state
q21.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0001 0.0000 0.0000 0.0000 0.0000 0.1660 0.8339

q3
2 0.6550 0.0031 0.0000 0.2335 0.0000 0.0000 0.1084

q3
3 0.0001 0.9976 0.0006 0.0016 0.0000 0.0000 0.0000

q3
4 0.0019 0.0000 0.0000 0.0000 0.0000 0.1661 0.8320

q3
5 0.0000 0.6591 0.1976 0.0000 0.0000 0.0000 0.1433

q3
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table A.71: Emission likelihoods of the production state children of the
“enter/exit” submodel in the “eat dinner” model stored at the children states
of q21 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
2 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
3 0.0000 0.0000 0.0000 0.0000 0.0409 0.9591

q3
4 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
5 0.0000 0.0000 0.0000 0.0000 0.9999 0.0001

q3
6 0.2244 0.0000 0.0000 0.0000 0.0000 0.7756

Table A.72: Initial state likelihoods for the first “eat dinner” submodel in
the “eat dinner” model stored at state q22.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0284 0.0000 0.9659 0.0057 0.0000
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Table A.73: State transition likelihoods governing the production state chil-
dren of the first “eat dinner” submodel in the “eat dinner” model stored at
state q22.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.7785 0.0000 0.0000 0.0000 0.0000 0.2215 0.0000

q3
2 0.7183 0.0000 0.2817 0.0000 0.0000 0.0000 0.0000

q3
3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
4 0.2099 0.7001 0.0000 0.0000 0.0900 0.0000 0.0000

q3
5 0.7137 0.0000 0.2863 0.0000 0.0000 0.0000 0.0000

q3
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.7785 0.2214

Table A.74: Emission likelihoods of the production state children of the first
“eat dinner” submodel in the “eat dinner” model stored at the children states
of q22 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
3 0.0000 0.0000 0.0000 0.2523 0.7477 0.0000

q3
4 0.0000 0.0000 0.0000 0.0000 0.4016 0.5984

q3
5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
6 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

Table A.75: Initial state likelihoods for the second “eat dinner” submodel in
the “eat dinner” model stored at state q23.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 0.0000 0.0000 0.0013 0.9987
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Table A.76: State transition likelihoods governing the production state chil-
dren of the second “eat dinner” submodel in the “eat dinner” model stored at
state q23.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.4336 0.0040 0.2300 0.2622 0.0569 0.0132 0.0000

q3
2 0.0000 0.1294 0.0000 0.0000 0.0000 0.0000 0.8706

q3
3 0.1050 0.1051 0.1031 0.6667 0.0139 0.0062 0.0000

q3
4 0.0571 0.3543 0.1983 0.3559 0.0322 0.0023 0.0000

q3
5 0.4591 0.0000 0.2415 0.0266 0.0610 0.2118 0.0000

q3
6 0.1416 0.0000 0.0022 0.0000 0.1952 0.6611 0.0000

Table A.77: Emission likelihoods of the production state children of the
second “eat dinner” submodel in the “eat dinner” model stored at the children
states of q23.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0000 0.0000 0.0000 0.9433 0.0567

q3
3 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
4 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
5 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
6 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
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A.2.4 “Eat Dinner While Watching TV”

The state transition likelihoods and the emission probabilities for the “eat dinner while

watching TV’ class model in Figure 3.10 are presented here in Tables A.78–A.88.

Table A.78: Initial state likelihoods stored at the root node in the “eat dinner
while watching TV” model.

Destination

q2
1 q2

2 q2
3

0.0000 1.0000 0.0000

Table A.79: State transition likelihoods governing the second layer of the
“eat dinner while watching TV” model stored at the root node.

Destination

Source q2
1 q2

2 q2
3 q2

end

q2
1 0.0000 0.0000 1.0000 0.0000

q2
2 0.0000 0.0000 0.5000 0.5000

q2
3 0.5357 0.4643 0.0000 0.0000

Table A.80: Initial state likelihoods for the “eat dinner” submodel in the
“eat dinner while watching TV” model stored at state q21 .

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 0.0956 0.0000 0.0000 0.9044
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Table A.81: State transition likelihoods governing the production state chil-
dren of the “eat dinner” submodel in the “eat dinner while watching TV”
model stored at state q21 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.7958 0.0000 0.0000 0.0000 0.0000 0.0000 0.2042

q3
2 0.0266 0.5070 0.0000 0.0464 0.4199 0.0000 0.0000

q3
3 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
4 0.0000 0.4586 0.0000 0.5124 0.0039 0.0000 0.0250

q3
5 0.3868 0.1833 0.0000 0.1089 0.3211 0.0000 0.0000

q3
6 0.0000 0.0000 0.9933 0.0067 0.0000 0.0000 0.0000

Table A.82: Emission likelihoods of the production state children of the “eat
dinner” submodel in the “eat dinner while watching TV” model stored at the
children states of q21 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
3 0.0000 0.7510 0.0000 0.2490 0.0000 0.0000

q3
4 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
5 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

q3
6 0.0000 0.0000 0.0000 0.8720 0.1280 0.0000

Table A.83: Initial state likelihoods for the “enter/exit” submodel in the “eat
dinner while watching TV” model stored at state q22 .

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.2265 0.0365 0.7369 0.0000 0.0000 0.0000
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Table A.84: State transition likelihoods governing the production state chil-
dren of the “enter/exit” submodel in the “eat dinner while watching TV” model
stored at state q22 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0000 0.4647 0.0000 0.0000 0.4968 0.0385 0.0000

q3
2 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
3 0.7103 0.2713 0.0000 0.0000 0.0184 0.0000 0.0000

q3
4 0.6967 0.2990 0.0000 0.0000 0.0043 0.0000 0.0000

q3
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.9727 0.0273

q3
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table A.85: Emission likelihoods of the production state children of the
“enter/exit” submodel in the “eat dinner while watching TV” model stored at
the children states of q22.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
2 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
3 0.0000 0.0000 0.0000 0.0000 0.4586 0.5414

q3
4 0.0000 0.0000 0.0000 0.0000 0.8457 0.1543

q3
5 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
6 0.0000 0.0000 0.0000 0.0590 0.0000 0.9410

Table A.86: Initial state likelihoods for the “walk by TV” submodel in the
“eat dinner while watching TV” model stored at state q23 .

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.2990 0.0700 0.0374 0.0000 0.5935
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Table A.87: State transition likelihoods governing the production state chil-
dren of the “walk by TV” submodel in the “eat dinner while watching TV”
model stored at state q23 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.1372 0.0000 0.0000 0.0547 0.0000 0.0000 0.8081

q3
2 0.0775 0.0697 0.2680 0.0583 0.5264 0.0000 0.0000

q3
3 0.0177 0.0000 0.0000 0.0000 0.9823 0.0000 0.0000

q3
4 0.8672 0.0000 0.0000 0.1305 0.0024 0.0000 0.0000

q3
5 0.0000 0.0000 0.0000 0.8140 0.1706 0.0000 0.0154

q3
6 0.0000 0.0000 0.8579 0.0655 0.0004 0.0000 0.0762

Table A.88: Emission likelihoods of the production state children of the “walk
by TV” submodel in the “eat dinner while watching TV” model stored at the
children states of q23 .

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.9673 0.0000 0.0000 0.0327 0.0000 0.0000

q3
2 0.0018 0.0000 0.0000 0.9982 0.0000 0.0000

q3
3 0.8063 0.0000 0.0000 0.1937 0.0000 0.0000

q3
4 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
5 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
6 0.0562 0.0000 0.0000 0.5573 0.3864 0.0000
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A.2.5 “There is Nothing Good on TV – Read a Book Instead”

The state transition likelihoods and the emission probabilities for the “there is nothing

good on TV” class model in Figure 3.11 are presented here in Tables A.89–A.99.

Table A.89: Initial state likelihoods stored at the root node in the “there is
nothing good on TV” model.

Destination

q2
1 q2

2 q2
3

1.0000 0.0000 0.0000

Table A.90: State transition likelihoods governing the second layer of the
“there is nothing good on TV” model stored at the root node.

Destination

Source q2
1 q2

2 q2
3 q2

end

q2
1 0.0000 0.0000 1.0000 0.0000

q2
2 0.0000 0.0000 0.0000 1.0000

q2
3 0.4643 0.5357 0.0000 0.0000

Table A.91: Initial state likelihoods for the “enter via TV” submodel in the
“there is nothing good on TV” model stored at state q21 .

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.3842 0.0000 0.0436 0.0000 0.0365 0.5357
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Table A.92: State transition likelihoods governing the production state chil-
dren of the “enter via TV” submodel in the “there is nothing good on TV”
model stored at state q21 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

q3
2 0.0000 0.2615 0.0223 0.0000 0.0896 0.0000 0.6267

q3
3 0.0000 0.9264 0.0158 0.0000 0.0057 0.0000 0.0520

q3
4 0.8520 0.0000 0.0000 0.1480 0.0000 0.0000 0.0000

q3
5 0.0000 0.3858 0.2986 0.0000 0.3156 0.0000 0.0000

q3
6 0.0000 0.0000 0.0000 0.3632 0.0000 0.6368 0.0000

Table A.93: Emission likelihoods of the production state children of the
“enter via TV” submodel in the “there is nothing good on TV” model stored
at the children states of q21.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.2116 0.0000 0.0000 0.7884 0.0000 0.0000

q3
2 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
4 0.0000 0.0000 0.0000 0.0000 0.5088 0.4912

q3
5 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

q3
6 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table A.94: Initial state likelihoods for the “exit via bookcase” submodel in
the “there is nothing good on TV” model stored at state q22.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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Table A.95: State transition likelihoods governing the production state chil-
dren of the “exit via bookcase” submodel in the “there is nothing good on TV”
model stored at state q22 .

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0000 0.2136 0.7864 0.0000 0.0000 0.0000 0.0000

q3
2 0.0000 0.0356 0.1133 0.8512 0.0000 0.0000 0.0000

q3
3 0.0000 0.0000 0.0607 0.9393 0.0000 0.0000 0.0000

q3
4 0.0000 0.0000 0.0000 0.0927 0.9073 0.0000 0.0000

q3
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0767 0.9233

q3
6 0.99997 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

Table A.96: Emission likelihoods of the production state children of the “exit
via bookcase” submodel in the “there is nothing good on TV” model stored at
the children states of q22.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0714 0.0000 0.0000 0.5711 0.2860 0.0715

q3
2 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
3 0.0000 0.0000 0.0000 0.0000 0.0010 0.9990

q3
4 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

q3
5 0.0646 0.0000 0.0000 0.0000 0.0000 0.9354

q3
6 0.0000 0.0000 0.0000 0.9286 0.0714 0.0000

Table A.97: Initial state likelihoods for the “find book / use couch” submodel
in the “there is nothing good on TV” model stored at state q23.

Destination

q3
1 q3

2 q3
3 q3

4 q3
5 q3

6

0.5804 0.0010 0.2463 0.0000 0.0000 0.1723
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Table A.98: State transition likelihoods governing the production state chil-
dren of the “find book / use couch” submodel in the “there is nothing good on
TV” model stored at state q23.

Destination

Source q3
1 q3

2 q3
3 q3

4 q3
5 q3

6 q3
end

q3
1 0.0000 0.3984 0.4949 0.0000 0.1067 0.0000 0.0000

q3
2 0.0000 0.6520 0.0000 0.3465 0.0000 0.0015 0.0000

q3
3 0.0000 0.0000 0.8389 0.0000 0.1492 0.0119 0.0000

q3
4 0.0000 0.0213 0.0086 0.6758 0.0000 0.0001 0.2942

q3
5 0.0000 0.0000 0.0000 0.0000 0.0952 0.9048 0.0000

q3
6 0.0000 0.1437 0.0000 0.0000 0.0000 0.8563 0.0000

Table A.99: Emission likelihoods of the production state children of the “find
book / use couch” submodel in the “there is nothing good on TV” model stored
at the children states of q23.

Observation
State Stove Food Prep Sink Undefined Fridge Door

q3
1 0.0146 0.0000 0.0000 0.9854 0.0000 0.0000

q3
2 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
3 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

q3
4 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

q3
5 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

q3
6 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
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